基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
Transformer在学习视觉和语言表示方面取得了巨大的成功,这在各种下游任务中都是一般的。在视觉控制中,可以在不同控制任务之间转移的可转移状态表示对于减少训练样本量很重要。但是,将变压器移植到样品有效的视觉控制仍然是一个具有挑战性且未解决的问题。为此,我们提出了一种新颖的控制变压器(CTRLFORMER),具有先前艺术所没有的许多吸引人的好处。首先,CTRLFORMER共同学习视觉令牌和政策令牌之间的自我注意事项机制,在不同的控制任务之间可以学习和转移多任务表示无灾难性遗忘。其次,我们仔细设计了一种对比的增强学习范式来训练Ctrlformer,从而使其能够达到高样本效率,这在控制问题中很重要。例如,在DMControl基准测试中,与最近的高级方法不同,该方法在使用100K样品转移学习后通过在“ Cartpole”任务中产生零分数而失败,CTRLFORMER可以在维持100K样本的同时获得最先进的分数先前任务的性能。代码和模型已在我们的项目主页中发布。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
Motivated by the problem of matching vertices in two correlated Erd\H{o}s-R\'enyi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.
translated by 谷歌翻译
Existing solutions to network scheduling typically assume that the instantaneous link rates are completely known before a scheduling decision is made or consider a bandit setting where the accurate link quality is discovered only after it has been used for data transmission. In practice, the decision maker can obtain (relatively accurate) channel information, e.g., through beamforming in mmWave networks, right before data transmission. However, frequent beamforming incurs a formidable overhead in densely deployed mmWave WLANs. In this paper, we consider the important problem of throughput optimization with joint link probing and scheduling. The problem is challenging even when the link rate distributions are pre-known (the offline setting) due to the necessity of balancing the information gains from probing and the cost of reducing the data transmission opportunity. We develop an approximation algorithm with guaranteed performance when the probing decision is non-adaptive, and a dynamic programming based solution for the more challenging adaptive setting. We further extend our solutions to the online setting with unknown link rate distributions and develop a contextual-bandit based algorithm and derive its regret bound. Numerical results using data traces collected from real-world mmWave deployments demonstrate the efficiency of our solutions.
translated by 谷歌翻译
People with diabetes are more likely to develop diabetic retinopathy (DR) than healthy people. However, DR is the leading cause of blindness. At present, the diagnosis of diabetic retinopathy mainly relies on the experienced clinician to recognize the fine features in color fundus images. This is a time-consuming task. Therefore, in this paper, to promote the development of UW-OCTA DR automatic detection, we propose a novel semi-supervised semantic segmentation method for UW-OCTA DR image grade assessment. This method, first, uses the MAE algorithm to perform semi-supervised pre-training on the UW-OCTA DR grade assessment dataset to mine the supervised information in the UW-OCTA images, thereby alleviating the need for labeled data. Secondly, to more fully mine the lesion features of each region in the UW-OCTA image, this paper constructs a cross-algorithm ensemble DR tissue segmentation algorithm by deploying three algorithms with different visual feature processing strategies. The algorithm contains three sub-algorithms, namely pre-trained MAE, ConvNeXt, and SegFormer. Based on the initials of these three sub-algorithms, the algorithm can be named MCS-DRNet. Finally, we use the MCS-DRNet algorithm as an inspector to check and revise the results of the preliminary evaluation of the DR grade evaluation algorithm. The experimental results show that the mean dice similarity coefficient of MCS-DRNet v1 and v2 are 0.5161 and 0.5544, respectively. The quadratic weighted kappa of the DR grading evaluation is 0.7559. Our code will be released soon.
translated by 谷歌翻译