Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems.
translated by 谷歌翻译
基于生成神经辐射场(GNERF)基于生成神经辐射场(GNERF)的3D感知gan已达到令人印象深刻的高质量图像产生,同时保持了强3D一致性。最显着的成就是在面部生成领域中取得的。但是,这些模型中的大多数都集中在提高视图一致性上,但忽略了分离的方面,因此这些模型无法提供高质量的语义/属性控制对生成。为此,我们引入了一个有条件的GNERF模型,该模型使用特定属性标签作为输入,以提高3D感知生成模型的控制能力和解散能力。我们利用预先训练的3D感知模型作为基础,并集成了双分支属性编辑模块(DAEM),该模块(DAEM)利用属性标签来提供对生成的控制。此外,我们提出了一个Triot(作为INIT的训练,并针对调整进行优化),以优化潜在矢量以进一步提高属性编辑的精度。广泛使用的FFHQ上的广泛实验表明,我们的模型在保留非目标区域的同时产生具有更好视图一致性的高质量编辑。该代码可在https://github.com/zhangqianhui/tt-gnerf上找到。
translated by 谷歌翻译
本文提出了一种凝视校正和动画方法,用于高分辨率,不受约束的肖像图像,可以在没有凝视角度和头部姿势注释的情况下对其进行训练。常见的凝视校正方法通常需要用精确的注视和头姿势信息对培训数据进行注释。使用无监督的方法解决此问题仍然是一个空旷的问题,尤其是对于野外高分辨率的面部图像,这并不容易用凝视和头部姿势标签注释。为了解决这个问题,我们首先创建两个新的肖像数据集:Celebgaze和高分辨率Celebhqgaze。其次,我们将目光校正任务制定为图像介绍问题,使用凝视校正模块(GCM)和凝视动画模块(GAM)解决。此外,我们提出了一种无监督的训练策略,即训练的综合训练,以学习眼睛区域特征与凝视角度之间的相关性。结果,我们可以在此空间中使用学习的潜在空间进行凝视动画。此外,为了减轻培训和推理阶段中的记忆和计算成本,我们提出了一个与GCM和GAM集成的粗到精细模块(CFM)。广泛的实验验证了我们方法对野外低和高分辨率面部数据集中的目光校正和凝视动画任务的有效性,并证明了我们方法在艺术状态方面的优越性。代码可从https://github.com/zhangqianhui/gazeanimationv2获得。
translated by 谷歌翻译
最近已经示出了从2D图像中提取隐式3D表示的生成神经辐射场(GNERF)模型,以产生代表刚性物体的现实图像,例如人面或汽车。然而,他们通常难以产生代表非刚性物体的高质量图像,例如人体,这对许多计算机图形应用具有很大的兴趣。本文提出了一种用于人类图像综合的3D感知语义导向生成模型(3D-SAGGA),其集成了GNERF和纹理发生器。前者学习人体的隐式3D表示,并输出一组2D语义分段掩模。后者将这些语义面部掩模转化为真实的图像,为人类的外观添加了逼真的纹理。如果不需要额外的3D信息,我们的模型可以使用照片现实可控生成学习3D人类表示。我们在Deepfashion DataSet上的实验表明,3D-SAGGAN显着优于最近的基线。
translated by 谷歌翻译
手语翻译(SLT),它以手语中的视觉内容以口语中的语言生成文本,很重要,以协助听力态度的沟通。灵感来自神经机翻译(NMT),最现有的SLT研究采用了一般序列来序列学习策略。然而,SLT与常规NMT任务显着不同,因为Sign语言通过多个视觉手动方面传达了消息。因此,在本文中,标志语言的这些独特的特征被制定为分层时空图表示,包括高级和微级图形,顶点表征指定的身体部位和边缘表示它们的交互。特别地,高级图表代表了手表和面部的区域中的图案,并且细级图考虑了面部区域的手和地标的关系。为了了解这些图形模式,提出了一种新颖的深度学习架构,即分层时空图神经网络(HST-GNN)。提出了具有邻域上下文的图形卷积和图形自我关注,以表征本地和全局图形属性。基准数据集的实验结果证明了该方法的有效性。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译