Because of the widespread existence of noise and data corruption, recovering the true regression parameters with a certain proportion of corrupted response variables is an essential task. Methods to overcome this problem often involve robust least-squares regression, but few methods perform well when confronted with severe adaptive adversarial attacks. In many applications, prior knowledge is often available from historical data or engineering experience, and by incorporating prior information into a robust regression method, we develop an effective robust regression method that can resist adaptive adversarial attacks. First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm, which improves the breakdown point when facing adaptive adversarial attacks. Then, to improve the robustness and reduce the estimation error caused by the inclusion of priors, we use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm. We prove the theoretical convergence of the proposed algorithms under mild conditions, and extensive experiments show that under different types of dataset attacks, our algorithms outperform other benchmark ones. Finally, we apply our methods to a data-recovery problem in a real-world application involving a space solar array, demonstrating their good applicability.
translated by 谷歌翻译
招聘和大学录取等许多申请涉及申请人的评估和选择。这些任务在根本上是困难的,并且需要从多个不同方面(我们称为“属性”)结合证据。在这些应用程序中,申请人的数量通常很大,一个常见的做法是以分布式方式将任务分配给多个评估人员。具体而言,在经常使用的整体分配中,每个评估者都会分配申请人的子集,并要求评估其分配的申请人的所有相关信息。但是,这样的评估过程受到诸如错误校准的问题的约束(评估人员仅见一小部分申请人,并且可能没有良好的相对质量感)和歧视(评估者受到有关申请人无关的信息的影响)。我们确定基于属性的评估允许替代分配方案。具体而言,我们考虑分配每个评估者更多的申请人,但每个申请人的属性更少,称为分割分配。我们通过理论和实验方法比较了分段分配与几个维度的整体分配。我们在这两种方法之间建立了各种折衷方案,并确定一种方法在其中一种方法比另一种方法更准确地评估。
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
我们考虑了顺序评估的问题,在该问题中,评估者以序列观察候选人,并以在线,不可撤销的方式为这些候选人分配分数。受到在这种环境中研究顺序偏见的心理学文献的激励 - 即,评估结果与候选人出现的顺序之间的依赖性 - 我们为评估者的评级过程提出了一个自然模型,该模型捕获了缺乏固有的校准固有的校准这样的任务。我们进行众包实验,以展示模型的各个方面。然后,我们开始研究如何通过将其作为统计推断问题来纠正模型下的顺序偏差。我们提出了一个接近线性的时间,在线算法,以确保两个规范的排名指标可以保证。我们还通过在两个指标中建立匹配的下限来证明我们的算法在理论上是最佳信息。最后,我们表明我们的算法优于使用报告得分引起的排名的事实上的方法。
translated by 谷歌翻译
在本文中,我们介绍了基于大型预训练的语言模型(PLM)pangu-alpha(Zeng等,2021)的中国预训练的开放域对话生成模型。与其他对大量对话数据进行培训的预训练的对话模型不同,我们旨在通过继承PLM的有价值的语言能力和知识来构建强大的对话模型,并以相对较少的数据和计算成本构建强大的对话模型。为此,我们训练大型PLM Pangu-Alpha的Pangu-bot,该机器人已被证明在各种中国自然语言任务上表现出色。我们研究了pangu-bot产生的响应的不同方面,包括响应质量,知识和安全性。我们表明,Pangu-Bot优于最先进的中国对话系统(CDIALGPT(Wang等,2020),Eva(Zhou等,2021),EVA2.0(Gu等,2022)) W.R.T.以上三个方面。我们还证明,可以轻松地部署pangu-bot,以在没有进一步训练的情况下产生情感反应。在整个经验分析中,我们还指出,Pangu-bot响应质量,知识正确性和安全性仍然远非完美,进一步的探索对于建立可靠且智能的对话系统是必不可少的。我们的型号和代码将在https://github.com/huawei-noah/pretretaining-language-model/tree/master/master/pangu-bot上提供。
translated by 谷歌翻译
Handling and digesting a huge amount of information in an efficient manner has been a long-term demand in modern society. Some solutions to map key points (short textual summaries capturing essential information and filtering redundancies) to a large number of arguments/opinions have been provided recently (Bar-Haim et al., 2020). To complement the full picture of the argument-to-keypoint mapping task, we mainly propose two approaches in this paper. The first approach is to incorporate prompt engineering for fine-tuning the pre-trained language models (PLMs). The second approach utilizes prompt-based learning in PLMs to generate intermediary texts, which are then combined with the original argument-keypoint pairs and fed as inputs to a classifier, thereby mapping them. Furthermore, we extend the experiments to cross/in-domain to conduct an in-depth analysis. In our evaluation, we find that i) using prompt engineering in a more direct way (Approach 1) can yield promising results and improve the performance; ii) Approach 2 performs considerably worse than Approach 1 due to the negation issue of the PLM.
translated by 谷歌翻译
通过对齐跨模型自动化器的潜在空间来学习共同的潜在嵌入是广义零拍分类(GZSC)的有效策略。然而,由于缺乏细粒度的实例 - 明智的注释,它仍然很容易遭受域移位问题,用于多样化图像的视觉表示与固定属性的语义表示之间的差异。在本文中,我们通过学习对齐的跨模型表示(称为ACMR)来提出创新的AutoEncoder网络,用于GZSC。具体地,我们提出了一种新的视觉 - 语义对准(VSA)方法,以加强由学习分类器引导的潜在子空间上的交叉模态潜在特征的对准。此外,我们提出了一种新颖的信息增强模块(IEM),以减少潜在变量折叠的可能性同时鼓励潜在变量的判别能力。公开数据集的广泛实验证明了我们方法的最先进的性能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译