文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统取得了显着的进展,重度人类工程和用户与系统的互动的成本。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动学习从输入NL问题到输出SQL查询的映射功能。随后,大型的预训练的语言模型将文本到SQL解析任务的最新作品带到了一个新级别。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面的评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。
translated by 谷歌翻译
基于图形的模型最近在人的重新识别任务中取得了巨大的成功,该任务首先计算了不同人之间的图形拓扑结构(亲和力),然后将信息传递给他们的信息以实现更强的功能。但是,我们在可见的红外人员重新识别任务(VI-REID)中发现了现有的基于图的方法,因为有两个问题:1)火车测试模式平衡差距,这是VI-REID任务的属性。两个模式数据的数量在训练阶段平衡,但推理极为不平衡,导致基于图的VI-REID方法的概括较低。 2)由图形模块的端到端学习方式引起的亚最佳拓扑结构。我们分析训练有素的输入特征会削弱图形拓扑的学习,从而使其在推理过程中不够概括。在本文中,我们提出了一种反事实干预特征转移(CIFT)方法来解决这些问题。具体而言,均匀和异质的特征转移(H2FT)旨在通过两种独立的设计的图形模块和不平衡的场景模拟来减少火车测试模态差距。此外,提出了反事实关系干预(CRI)来利用反事实干预和因果效应工具来突出拓扑结构在整个训练过程中的作用,这使图形拓扑结构更加可靠。对标准VI-REID基准测试的广泛实验表明,CIFT在各种设置下都优于最新方法。
translated by 谷歌翻译
Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
translated by 谷歌翻译
越来越多地用于优化深度神经网络(DNN)模型,以满足性能,资源利用和其他要求,越来越多地使用深入学习(DL)编译器(例如TVM和Tensorrt)。这些编译器中的错误可以产生优化的模型,其语义与原始模型不同,并产生不正确的结果,影响了下流应用程序的正确性。但是,由于其复杂性,在这些编译器中找到错误是具有挑战性的。在这项工作中,我们提出了一种新的模糊测试方法,用于在深入学习编译器中查找错误。我们的核心方法使用(i)轻重量操作员规范来生成多样化但有效的DNN模型,使我们能够行使编译器的大部分转换逻辑; (ii)基于梯度的搜索过程,用于查找模型输入,该过程避免在模型执行过程中避免任何浮点异常值,从而减少了错过错误或错误警报的机会; (iii)差异测试以识别错误。我们在NNSmith中实施了这种方法,该方法在过去的七个月中为TVM,Tensorrt,OnxRuntime和Pytorch发现了65个新错误。在这52个已得到证实,项目维护者已确定了44个。
translated by 谷歌翻译
提出了一种在智能家庭中监测的老年痴呆症患者的自动人工物联网(AIOT)系统。该系统主要根据传感器数据的活性推断实现两个功能,这些功能是实时活动异常监测和疾病相关活动的趋势预测。具体而言,CASAS数据集用于训练一个随机森林(RF)模型进行活动推断。然后,通过活动推理的输出数据训练的另一个RF模型用于异常活动监测。特别是,由于其准确性,时间效率,灵活性和可解释性之间的均衡交易,因此选择了RF的RF。此外,长期记忆(LSTM)用于预测患者疾病相关的活动趋势。因此,设计用于活动推理和异常活动检测的两个RF分类器的精度分别大于99%和94%。此外,以睡眠时间为例,LSTM模型实现了准确且明显的未来趋势预测。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
先前的深视频压缩方法仅使用单一运动补偿策略,并且很少采用来自传统标准(例如H.264/h.265)的模式预测技术来进行运动和残留压缩。在这项工作中,我们首先提出了一个粗到精细的(C2F)深视频压缩框架,以进行更好的运动补偿,其中我们以粗到良好的方式进行了两次运动估计,压缩和补偿。我们的C2F框架可以实现更好的运动补偿结果,而不会显着增加位成本。观察高优势网络中的高优势信息(即平均值和方差值)包含不同斑块的判别统计信息,我们还提出了两种有效的超优先指导模式预测方法。具体而言,使用高优势信息作为输入,我们建议两个模式预测网络分别预测最佳块分辨率,以进行更好的运动编码,并决定是否从每个块中跳过剩余信息以进行更好的剩余编码,而无需引入额外的位置,同时带来可忽略的额外计算成本。全面的实验结果表明,配备了新的高位指导模式预测方法,我们提出的C2F视频压缩框架实现了HEVC,UVG和MCL-JCV数据集的最新性能。
translated by 谷歌翻译
视觉场景的多样性非常丰富,不仅是因为物体和背景的无限组合,而且因为相同场景的观察可能随着观点的变化而变化很大。当观察来自多个观点的含有多个对象的视觉场景时,人类能够以每个观点以组成方式感知场景,同时实现不同视点的所谓的“对象恒定”,即使确切的观点是未计数器。这种能力对于人类来说是必不可少的,同时搬家,并有效地从视野中学习。它是有趣的设计模型具有相似的能力。在本文中,我们考虑从多个未指定的观点学习组成场景表示的新问题,而不使用任何监督,提出一个深深的生成模型,该模型将潜在的表示与视点无关的部分和一个视点依赖部分分开以解决这个问题。为了推断潜在的表示,通过神经网络迭代地集成在不同的视点中包含的信息。在几个专门设计的合成数据集上的实验表明,该方法能够从多个未指定的视点有效学习。
translated by 谷歌翻译
日志是确保许多软件系统的可靠性和连续性,尤其是大规模分布式系统的命令。他们忠实地录制运行时信息,以便于系统故障排除和行为理解。由于现代软件系统的大规模和复杂性,日志量已达到前所未有的水平。因此,对于基于逻究的异常检测,常规的手动检查方法甚至传统的基于机器学习的方法变得不切实际,这是一种不切实际的是,作为基于深度学习的解决方案的快速发展的催化剂。然而,目前在诉诸神经网络的代表性日志的异常探测器之间缺乏严格的比较。此外,重新实现过程需要不琐碎的努力,并且可以轻易引入偏差。为了更好地了解不同异常探测器的特性,在本文中,我们提供了六种最先进的方法使用的五种流行神经网络的全面审查和评估。特别是,4种所选方法是无监督的,并且剩下的两个是监督的。这些方法是用两个公开的日志数据集进行评估,其中包含近1600万日志消息和总共有04万个异常实例。我们相信我们的工作可以作为这一领域的基础,为未来的学术研究和工业应用做出贡献。
translated by 谷歌翻译
黑匣子优化(BBO)具有广泛的应用,包括自动机器学习,工程,物理和实验设计。但是,在适用性,性能和效率方面,用户对用户将BBO方法应用于现有软件包的问题仍有挑战。在本文中,我们构建了OpenBox,开源和通用BBO服务,具有改进的可用性。OpenBox后面的模块化设计还有助于灵活的抽象和优化在其他现有系统中常见的基本BBO组件。OpenBox分布,容错和可扩展。为了提高效率,OpenBox进一步利用“算法不可知”并行化和转移学习。我们的实验结果表明,与现有系统相比,OpenBox的有效性和效率。
translated by 谷歌翻译