全球越来越多的大学将各种形式的在线学习和混合学习作为其学术课程的一部分。此外,由于199年大流行而造成的最新变化导致在线教育的重要性和无处不在。电子学习的主要优点之一不仅是改善学生的学习经验并扩大教育前景,而且还可以通过学习分析来洞悉学生的学习过程。这项研究有助于通过以下方式改善和理解电子学习过程的主题。首先,我们证明可以根据从学生的行为数据中得出的顺序模式来构建准确的预测模型,这些模式能够在课程的早期识别出表现不佳的学生。其次,我们通过研究是否应根据特定于课程的顺序模式或基于更一般的行为模式的几个课程来构建每个课程的预测模型,从而调查了建立此类预测模型的特异性征用性权衡。最后,我们提出了一种捕获行为数据中时间方面的方法,并分析了其对模型预测性能的影响。我们改进的序列分类技术的结果能够以高度准确性来预测学生的表现,而对于课程特异性模型的结果达到了90%。
translated by 谷歌翻译
最近,在以结果为导向的预测过程监测(OOPPM)的领域进行了转变,以使用可解释的人工智能范式中的模型,但是评估仍然主要是通过基于绩效的指标来进行的,而不是考虑到启示性和缺乏可行性。解释。在本文中,我们通过解释的解释性(通过广泛使用的XAI属性和功能复杂性)和解释性模型的忠诚(通过单调性和分歧的水平)来定义解释性。沿事件,情况和控制流透视图分析了引入的属性,这些视角是基于过程的分析的典型代表。这允许定量比较,除其他外,固有地创建了用事后解释(例如Shapley值)(例如Shapley值)的固有创建的解释(例如逻辑回归系数)。此外,本文通过洞悉如何在OOPPM中典型的OOPPM中典型的变化预处理,模型的复杂性和事后解释性技术来撰写基于事件日志和手头的任务的准则,以根据事件日志规范和手头的任务选择适当的模型,以根据事件日志规范和手头任务选择适当的模型。影响模型的解释性。为此,我们在13个现实生活事件日志上基准了七个分类器。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
磁共振成像(MRI)是中风成像的中心方式。它被用来接受患者的治疗决定,例如选择患者进行静脉溶栓或血管内治疗。随后在住院期间使用MRI来通过可视化梗塞核心大小和位置来预测结果。此外,它可以用来表征中风病因,例如(心脏) - 栓塞和非胚胎中风之间的区分。基于计算机的自动医疗图像处理越来越多地进入临床常规。缺血性中风病变分割(ISLE)挑战的先前迭代有助于生成鉴定急性和急性缺血性中风病变分割的基准方法。在这里,我们介绍了一个专家注册的多中心MRI数据集,以分割急性到亚急性中风病变。该数据集包括400个多供应商MRI案例,中风病变大小,数量和位置的可变性很高。它分为n = 250的训练数据集和n = 150的测试数据集。所有培训数据将公开可用。测试数据集将仅用于模型验证,并且不会向公众发布。该数据集是Isles 2022挑战的基础,目的是找到算法方法,以实现缺血性中风的稳健和准确分割算法的开发和基准测试。
translated by 谷歌翻译
人类评分是分割质量的抽象表示。为了近似于稀缺专家数据的人类质量评级,我们训练替代质量估计模型。我们根据Brats注释方案评估复杂的多级分割问题,特别是神经胶质瘤分割。培训数据以15位专家神经放射科学家的质量评级为特征,范围从1到6星,用于各种计算机生成和手动3D注释。即使网络在2D图像上运行并使用稀缺的训练数据,我们也可以在与人类内部内可靠性相当的错误范围内近似分段质量。细分质量预测具有广泛的应用。虽然对分割质量的理解对于成功分割质量算法的成功临床翻译至关重要,但它可以在培训新的分割模型中发挥至关重要的作用。由于推断时间分裂,可以直接在损失函数中或在联合学习设置中作为完全自动的数据集策划机制。
translated by 谷歌翻译
粒子加速器的调谐计算机参数是一项重复且耗时的任务,可自动化。尽管可以使用许多现成的优化算法,但实际上它们的使用量有限,因为大多数方法都不考虑每种迭代中的安全至关重要的约束,例如损失信号或步骤尺寸的限制。一个值得注意的例外是安全的贝叶斯优化,这是一种以嘈杂的反馈进行数据驱动的调谐方法。我们建议并评估Paul Scherrer Institut(PSI)的两个研究设施的安全贝叶斯优化的阶梯尺寸有限变体:a)瑞士游离电子激光器(瑞士法)和b)高强度质子加速器(HIPA)。我们报告了两台机器上有希望的实验结果,最多调整了16个受约束约束的参数。
translated by 谷歌翻译
我们创建了一种用于检测反犹太主义的细粒度的AI系统。这种解释的AI将识别跨平台在线社交媒体信息中的语言和德语的反犹太主义,识别对在线社交媒体信息中的言论,口头侵略和阴谋,以支持高级决策。
translated by 谷歌翻译
本报告提供了对针对在线毒性的联系方式的参与分析。在2020年2月和2021年7月之间,我们观察了我们的细粒度,多语言检测AI识别的社交媒体上有超过1500万有毒信息。超过1,000个仪表板用户响应有毒性消息,具有可视化模因,文本或AI生成的文本的组合,或者报告内容。这导致新的,现实生活中的在线仇恨减轻的自我监管方法。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译