In the era of noisy intermediate scale quantum devices, variational quantum circuits (VQCs) are currently one of the main strategies for building quantum machine learning models. These models are made up of a quantum part and a classical part. The quantum part is given by a parametrization $U$, which, in general, is obtained from the product of different quantum gates. By its turn, the classical part corresponds to an optimizer that updates the parameters of $U$ in order to minimize a cost function $C$. However, despite the many applications of VQCs, there are still questions to be answered, such as for example: What is the best sequence of gates to be used? How to optimize their parameters? Which cost function to use? How the architecture of the quantum chips influences the final results? In this article, we focus on answering the last question. We will show that, in general, the cost function will tend to a typical average value the closer the parameterization used is from a $2$-design. Therefore, the closer this parameterization is to a $2$-design, the less the result of the quantum neural network model will depend on its parametrization. As a consequence, we can use the own architecture of the quantum chips to defined the VQC parametrization, avoiding the use of additional swap gates and thus diminishing the VQC depth and the associated errors.
translated by 谷歌翻译