Federated learning (FL) has emerged as an instance of distributed machine learning paradigm that avoids the transmission of data generated on the users' side. Although data are not transmitted, edge devices have to deal with limited communication bandwidths, data heterogeneity, and straggler effects due to the limited computational resources of users' devices. A prominent approach to overcome such difficulties is FedADMM, which is based on the classical two-operator consensus alternating direction method of multipliers (ADMM). The common assumption of FL algorithms, including FedADMM, is that they learn a global model using data only on the users' side and not on the edge server. However, in edge learning, the server is expected to be near the base station and have direct access to rich datasets. In this paper, we argue that leveraging the rich data on the edge server is much more beneficial than utilizing only user datasets. Specifically, we show that the mere application of FL with an additional virtual user node representing the data on the edge server is inefficient. We propose FedTOP-ADMM, which generalizes FedADMM and is based on a three-operator ADMM-type technique that exploits a smooth cost function on the edge server to learn a global model parallel to the edge devices. Our numerical experiments indicate that FedTOP-ADMM has substantial gain up to 33\% in communication efficiency to reach a desired test accuracy with respect to FedADMM, including a virtual user on the edge server.
translated by 谷歌翻译
在这项工作中,我们考虑了具有多个基站和间隔干扰的无线系统中的联合学习模型。在学习阶段,我们应用了一个不同的私人方案,将信息从用户传输到其相应的基站。我们通过在其最佳差距上得出上限来显示学习过程的收敛行为。此外,我们定义了一个优化问题,以减少该上限和总隐私泄漏。为了找到此问题的本地最佳解决方案,我们首先提出了一种计划资源块和用户的算法。然后,我们扩展了该方案,以通过优化差异隐私人工噪声来减少总隐私泄漏。我们将这两个程序的解决方案应用于联合学习系统的参数。在这种情况下,我们假设每个用户都配备了分类器。此外,假定通信单元的资源块比用户数量少。仿真结果表明,与随机调度程序相比,我们提出的调度程序提高了预测的平均准确性。此外,其具有噪声优化器的扩展版本大大减少了隐私泄漏的量。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
对行人基础设施,特别是人行道的大规模分析对人类以人为本的城市规划和设计至关重要。受益于通过纽约市开放数据门户提供的Procepetric特征和高分辨率OrthoImages的丰富数据集,我们培养计算机视觉模型来检测遥感图像的人行道,道路和建筑物,达到83%的Miou持有-out测试集。我们应用形状分析技术来研究提取的人行道的不同属性。更具体地,我们对人行道的宽度,角度和曲率进行了瓷砖明智的分析,除了它们对城市地区的可行性和可达性的一般影响,众所周知,在轮椅用户的移动性中具有重要作用。初步结果是有前途的,瞥见了不同城市采用的拟议方法的潜力,使研究人员和从业者可以获得更生动的行人领域的画面。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
压力溃疡在ICU患者中具有很高的患病率,但如果以初始阶段识别,则可预防。在实践中,布拉登规模用于分类高风险患者。本文通过使用MIMIC-III V1.4中可用的数据调查了在电子健康中使用机器学习记录数据的使用。制定了两个主要贡献:评估考虑在住宿期间所有预测的模型的新方法,以及用于机器学习模型的新培训方法。结果与现有技术相比,表现出卓越的性能;此外,所有型号在精密召回曲线中的每个工作点都超过了Braden刻度。 - - les \〜oes por按\〜ao possuem alta preval \ ^ encia em pacientes de Uti e s \〜ao preven \'iveis ao serem endicidificadas em Est \'agios Iniciais。 na pr \'atica materiza-se a escala de braden para classifica \ c {c} \〜ao de pacientes em risco。 Este Artigo Investiga o Uso de Apenizado de M \'Aquina Em Dados de Registros Eletr \ ^ Onicos Para Este Fim,Parir Da Base dados Mimic-III V1.4。 s \〜ao feitas duas contribui \ c {c} \〜oes principais:uma nova abordagem para a avalia \ c {c} \〜ao dos modelos e da escala da escala de braden levando em conta todas作为predi \ c {c} \ 〜oes feitas ao longo das interna \ c {c} \〜oes,euro novo m \'etodo de treinamento para os modelos de aprendizo de m \'aquina。 os结果os overidos superam o estado da arte everifica-se que os modelos superam意义a escala de braden em todos oS pontos de Opera \ c {c} \〜〜ao da curva de precis \〜ao por sensibilidade。
translated by 谷歌翻译
每年,AEDESAEGYPTI蚊子都感染了数百万人,如登录,ZIKA,Chikungunya和城市黄热病等疾病。战斗这些疾病的主要形式是通过寻找和消除潜在的蚊虫养殖场来避免蚊子繁殖。在这项工作中,我们介绍了一个全面的空中视频数据集,获得了无人驾驶飞行器,含有可能的蚊帐。使用识别所有感兴趣对象的边界框手动注释视频数据集的所有帧。该数据集被用于开发基于深度卷积网络的这些对象的自动检测系统。我们提出了通过在可以注册检测到的对象的时空检测管道的对象检测流水线中的融合来利用视频中包含的时间信息,这些时间是可以注册检测到的对象的,最大限度地减少最伪正和假阴性的出现。此外,我们通过实验表明使用视频比仅使用框架对马赛克组成马赛克更有利。使用Reset-50-FPN作为骨干,我们可以分别实现0.65和0.77的F $ _1 $ -70分别对“轮胎”和“水箱”的对象级别检测,说明了正确定位潜在蚊子的系统能力育种对象。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
本文研究了红外(IR)成像在乳房疾病检测中的潜在贡献。它比较了使用一些算法检测恶性乳房状况(例如支持向量机(SVM))在应用于公共数据时的一致性的结果。此外,为了利用实际IR成像的能力作为临床试验的补充,并使用高分辨率IR成像促进研究,我们认为使用了由自信训练的乳房医生修订的公共数据库是必不可少的。在我们的工作中,只有静态获取协议才被考虑。我们使用了来自Pro Engenharia(Proeng)公共数据库的LO2 IR单乳房图像(54个正常和48个发现)。这些图像是从联邦De Pernambuco大学(UFPE)大学医院收集的。我们采用了作者提出的相同功能,该功能使用顺序最小优化(SMO)分类器,获得了最佳结果,并获得了61.7%的准确性,而Youden指数为0.24。
translated by 谷歌翻译