核密度估计(KDE)是使用最广泛的非参数密度估计方法之一。它是一种基于内存的方法,即它将整个培训数据集用于预测,这使其不适合大多数当前的大数据应用程序。已经提出了几种策略,例如基于树或基于哈希的估计器,以提高内核密度估计方法的效率。新型密度内核密度估计方法(DMKDE)使用密度矩阵,量子机械形式主义和随机傅立叶特征(显式内核近似)来产生密度估计。该方法的根源在KDE中,可以被视为近似方法,而无需基于内存的限制。在本文中,我们系统地评估了新型DMKDE算法,并将其与其他最新的快速程序进行比较,以近似于不同合成数据集的内核密度估计方法。我们的实验结果表明,在高维数据上执行时,显示了DMKDE与其竞争对手的计算密度估计和优势相提并论。我们将所有代码作为开源软件存储库提供。
translated by 谷歌翻译
密度估计是统计和机器学习应用中的基本任务。内核密度估计是低维度非参数密度估计的强大工具;但是,其性能在更高的维度上很差。此外,其预测复杂性量表与更多的培训数据点线性线性。本文提出了一种神经密度估计的方法,可以看作是一种核密度估计的一种,但没有高预测计算复杂性。该方法基于密度矩阵,一种用于量子力学的形式主义和自适应傅立叶特征。可以在没有优化的情况下对该方法进行培训,但也可以与深度学习体系结构集成并使用梯度下降进行训练。因此,它可以看作是神经密度估计方法的一种形式。该方法在不同的合成和实际数据集中进行了评估,其性能与最新的神经密度估计方法进行了比较,从而获得了竞争结果。
translated by 谷歌翻译
Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
在本文中,我们为Pavlovian信号传达的多方面的研究 - 一个过程中学到的一个过程,一个代理商通过另一个代理商通知决策的时间扩展预测。信令紧密连接到时间和时间。在生成和接收信号的服务中,已知人类和其他动物代表时间,确定自过去事件以来的时间,预测到未来刺激的时间,并且都识别和生成展开时间的模式。我们调查通过引入部分可观察到的决策域来对学习代理之间的影响和信令在我们称之为霜冻空心的情况下如何影响学习代理之间的影响和信令。在该域中,预测学习代理和加强学习代理被耦合到两部分决策系统,该系统可以在避免时间条件危险时获取稀疏奖励。我们评估了两个域变型:机器代理在七态线性步行中交互,以及虚拟现实环境中的人机交互。我们的结果展示了帕夫洛维亚信号传导的学习速度,对药剂 - 代理协调具有不同时间表示(并且不)的影响,以及颞次锯齿对药剂和人毒剂相互作用的影响方式不同。作为主要贡献,我们将Pavlovian信号传导为固定信号范例与两个代理之间完全自适应通信学习之间的天然桥梁。我们进一步展示了如何从固定的信令过程计算地构建该自适应信令处理,其特征在于,通过快速的连续预测学习和对接收信号的性质的最小限制。因此,我们的结果表明了加固学习代理之间的沟通学习的可行建设者的途径。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
人工智能系统越来越涉及持续学习,以实现在系统培训期间不遇到的一般情况下的灵活性。与自治系统的人类互动广泛研究,但在系统积极学习的同时,研究发生了迄今为止发生的互动,并且可以在几分钟内明显改变其行为。在这项试验研究中,我们调查如何在代理商发展能力时如何发展人类和不断学习的预测代理人之间的互动。此外,我们可以比较两个不同的代理架构来评估代理设计中的代表性选择如何影响人工代理交互。我们开发虚拟现实环境和基于时间的预测任务,其中从增强学习(RL)算法增强人类预测中学到的预测。我们评估参与者在此任务中的性能和行为如何在代理类型中不同,使用定量和定性分析。我们的研究结果表明,系统的人类信任可能受到与代理人的早期互动的影响,并且反过来的信任会影响战略行为,但试点研究的限制排除了任何结论的声明。我们将信任作为互动的关键特征,以考虑基于RL的技术在考虑基于RL的技术时,并对这项研究进行了几项建议,以准备更大规模的调查。本文的视频摘要可以在https://youtu.be/ovyjdnbqtwq找到。
translated by 谷歌翻译
开普勒和苔丝任务产生了超过100,000个潜在的传输信号,必须处理,以便创建行星候选的目录。在过去几年中,使用机器学习越来越感兴趣,以分析这些数据以寻找新的外延网。与现有的机器学习作品不同,exoMiner,建议的深度学习分类器在这项工作中,模仿域专家如何检查诊断测试以VET传输信号。 exoMiner是一种高度准确,可说明的和强大的分类器,其中1)允许我们验证来自桅杆开口存档的301个新的外延网,而2)是足够的,足以应用于诸如正在进行的苔丝任务的任务中应用。我们进行了广泛的实验研究,以验证exoMiner在不同分类和排名指标方面比现有的传输信号分类器更可靠,准确。例如,对于固定精度值为99%,exoMiner检索测试集中的93.6%的所有外产网(即,召回= 0.936),而最佳现有分类器的速率为76.3%。此外,exoMiner的模块化设计有利于其解释性。我们介绍了一个简单的解释性框架,提供了具有反馈的专家,为什么exoMiner将运输信号分类为特定类标签(例如,行星候选人或不是行星候选人)。
translated by 谷歌翻译
当前的量子点(QD)设备的自动传动方法在显示出一些成功的同时,缺乏对数据可靠性的评估。当自主系统处理嘈杂或低质量数据时,这会导致意外的失败。在这项工作中,我们为QD设备的强大自动调整提供了一个框架,该QD设备将机器学习(ML)状态分类器与数据质量控制模块结合在一起。数据质量控制模块充当“守门人”系统,确保只有国家分类器处理可靠的数据。较低的数据质量会导致设备重新校准或终止。为了训练两个ML系统,我们通过结合QD实验的典型合成噪声来增强QD仿真。我们确认,在状态分类器的训练中包含合成噪声可以显着提高性能,在测试实验数据时,准确性为95.0(9)%。然后,我们通过表明状态分类器的性能随着预期的数据质量而恶化,从而验证数据质量控制模块的功能。我们的结果为嘈杂的QD设备的自动调整建立了强大而灵活的ML框架。
translated by 谷歌翻译