Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to maintain a large-scale model trained on growing annotation sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a neural network effectively learns relevant patterns for new (unseen) classes without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages the extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
translated by 谷歌翻译
课程学习是一种强大的培训方法,可以在某些情况下更快,更好的培训。但是,这种方法需要一个概念,即哪些示例很难且容易,这并不总是很容易提供。最近称为C得分的度量标准将其作为代理,例如,将其与学习一致性联系起来。不幸的是,这种方法是相当大的强化,从而限制了其对替代数据集的适用性。在这项工作中,我们通过不同的方法训练模型,以预测CIFAR-100和CIFAR-10的C得分。但是,我们发现这些模型在相同的分布和分布不足之内都概括了。这表明C分数不是由每个样本的个体特征定义的,而是由其他因素定义的。我们假设样本与其邻居的关系,尤其是其中有多少人共享相同的标签,可以帮助解释C分数。我们计划在未来的工作中探索这一点。
translated by 谷歌翻译
持续的学习方法努力减轻灾难性遗忘(CF),在学习新任务时,从以前学习的任务中丢失了知识。在这些算法中,有些在训练时维护以前任务中的样本子集。这些样本称为内存。这些方法表现出出色的性能,同时在概念上简单易于实现。然而,尽管它们很受欢迎,但几乎没有做任何事情来理解要包含在记忆中的元素。当前,这种记忆通常是通过随机抽样填充的,没有指导原则可以有助于保留以前的知识。在这项工作中,我们提出了一个基于称为一致性意识采样(CAWS)的样本的学习一致性的标准。该标准优先考虑通过深网更容易学习的样本。我们对三种不同的基于内存的方法进行研究:AGEM,GDUMB和经验重播,在MNIST,CIFAR-10和CIFAR-100数据集上。我们表明,使用最一致的元素在受到计算预算的约束时会产生性能提高;如果在没有这种约束的情况下,随机抽样是一个强大的基线。但是,在经验重播上使用CAWS可以改善随机基线的性能。最后,我们表明CAWS取得了与流行的内存选择方法相似的结果,同时需要大大减少计算资源。
translated by 谷歌翻译
持续学习领域(CL)寻求开发通过与非静止环境的交互累积随时间累积知识和技能的算法。在实践中,存在一种夸张的评估程序和算法解决方案(方法),每个潜在的潜在不相交的假设集。这种品种使得在CL困难中进行了衡量进展。我们提出了一种设置的分类,其中每个设置被描述为一组假设。从这个视图中出现了一棵树形的层次结构,更多的一般环境成为具有更严格假设的人的父母。这使得可以使用继承来共享和重用研究,因为开发给定设置的方法也使其直接适用于其任何孩子。我们将此想法实例化为名为SequoIa的公开软件框架,其特征来自持续监督学习(CSL)和持续加强学习(CRL)域的各种环境。除了来自外部图书馆的更专业的方法之外,SemoIa还包括一种易于延伸和定制的不断增长的方法。我们希望这一新的范式及其第一个实施可以帮助统一和加速CL的研究。您可以通过访问github.com/lebrice/squia来帮助我们长大树。
translated by 谷歌翻译
当随着时间的推移学习任务时,人工神经网络遭受称为灾难性遗忘(CF)的问题。当在训练网络的训练过程中覆盖网络的权重,导致忘记旧信息的新任务时,会发生这种情况。为了解决这个问题,我们提出了META可重复使用的知识或标记,这是一种新的方法,可以在学习新任务时促进重量可重用性而不是覆盖。具体来说,标记在任务之间保留一组共享权重。我们将这些共享权重设定为共同的知识库(KB),不仅用于学习新任务,而且还富有以丰富的新知识,因为模型了解新任务。标记背后的关键组件是两倍。一方面,冶金学习方法提供了逐步丰富KB的关键机制,并在任务之间促进重量可重用性。另一方面,一组培训掩模提供了选择性地从KB相关权重中选择的关键机制来解决每个任务。通过使用Mark,我们实现了最普遍的基准,在几个流行的基准中实现了最新的基准,在20分拆性MiniimAgenet数据集上超过了平均精度的最佳性能方法,同时使用55%的数量来实现几乎零遗忘参数。此外,消融研究提供了证据,实际上,标记正在学习每个任务选择性地使用的可重复使用的知识。
translated by 谷歌翻译
Prior work has extensively studied the latent space structure of GANs for unconditional image synthesis, enabling global editing of generated images by the unsupervised discovery of interpretable latent directions. However, the discovery of latent directions for conditional GANs for semantic image synthesis (SIS) has remained unexplored. In this work, we specifically focus on addressing this gap. We propose a novel optimization method for finding spatially disentangled class-specific directions in the latent space of pretrained SIS models. We show that the latent directions found by our method can effectively control the local appearance of semantic classes, e.g., changing their internal structure, texture or color independently from each other. Visual inspection and quantitative evaluation of the discovered GAN controls on various datasets demonstrate that our method discovers a diverse set of unique and semantically meaningful latent directions for class-specific edits.
translated by 谷歌翻译
Mitotic activity is a crucial proliferation biomarker for the diagnosis and prognosis of different types of cancers. Nevertheless, mitosis counting is a cumbersome process for pathologists, prone to low reproducibility, due to the large size of augmented biopsy slides, the low density of mitotic cells, and pattern heterogeneity. To improve reproducibility, deep learning methods have been proposed in the last years using convolutional neural networks. However, these methods have been hindered by the process of data labelling, which usually solely consist of the mitosis centroids. Therefore, current literature proposes complex algorithms with multiple stages to refine the labels at pixel level, and to reduce the number of false positives. In this work, we propose to avoid complex scenarios, and we perform the localization task in a weakly supervised manner, using only image-level labels on patches. The results obtained on the publicly available TUPAC16 dataset are competitive with state-of-the-art methods, using only one training phase. Our method achieves an F1-score of 0.729 and challenges the efficiency of previous methods, which required multiple stages and strong mitosis location information.
translated by 谷歌翻译
Histopathology imaging is crucial for the diagnosis and treatment of skin diseases. For this reason, computer-assisted approaches have gained popularity and shown promising results in tasks such as segmentation and classification of skin disorders. However, collecting essential data and sufficiently high-quality annotations is a challenge. This work describes a pipeline that uses suspected melanoma samples that have been characterized using Multi-Epitope-Ligand Cartography (MELC). This cellular-level tissue characterisation is then represented as a graph and used to train a graph neural network. This imaging technology, combined with the methodology proposed in this work, achieves a classification accuracy of 87%, outperforming existing approaches by 10%.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Deep learning has attained remarkable success in many 3D visual recognition tasks, including shape classification, object detection, and semantic segmentation. However, many of these results rely on manually collecting densely annotated real-world 3D data, which is highly time-consuming and expensive to obtain, limiting the scalability of 3D recognition tasks. Thus, we study unsupervised 3D recognition and propose a Self-supervised-Self-Labeled 3D Recognition (SL3D) framework. SL3D simultaneously solves two coupled objectives, i.e., clustering and learning feature representation to generate pseudo-labeled data for unsupervised 3D recognition. SL3D is a generic framework and can be applied to solve different 3D recognition tasks, including classification, object detection, and semantic segmentation. Extensive experiments demonstrate its effectiveness. Code is available at https://github.com/fcendra/sl3d.
translated by 谷歌翻译