针对目标的对话任务的先前研究缺乏关键观念,该观念在以目标为导向的人工智能代理的背景下进行了深入研究。在这项研究中,我们提出了目标引导的开放域对话计划(TGCP)任务的任务,以评估神经对话代理是否具有目标对话计划的能力。使用TGCP任务,我们研究了现有检索模型和最新强生成模型的对话计划能力。实验结果揭示了当前技术面临的挑战。
translated by 谷歌翻译
避免产生与先前环境相矛盾的响应是对话响应产生的重大挑战。一种可行的方法是后处理,例如从最终的n-最佳响应列表中滤除矛盾的响应。在这种情况下,n-最佳列表的质量极大地影响了矛盾的发生,因为最终响应是从该最佳列表中选择的。这项研究定量地分析了使用N最佳列表的一致性对神经反应产生模型的上下文矛盾意识。特别是,我们将极性问题用作简洁和定量分析的刺激输入。我们的测试说明了最近的神经反应产生模型和方法的矛盾意识,然后讨论了它们的性质和局限性。
translated by 谷歌翻译
简短的答案评分(SAS)是对学习者编写的简短文本的任务。近年来,基于深度学习的方法显着改善了SAS模型的性能,但是如何在将此类模型应用于教育领域时,如何保证高质量的预测仍然是一个关键问题。为了确保高质量的预测,我们介绍了探索人类在循环框架中使用分级成本的第一个研究,同时通过允许SAS模型与人类分级器共享分级任务,以确保分级质量。具体而言,通过引入指示模型预测可靠性的置信度估计方法,可以通过仅利用对评分结果可靠性高的预测来保证评分质量,并对人类分级的可靠性低可靠性。在我们的实验中,我们使用多个置信度估计方法和多个SAS数据集研究了提出的框架的可行性。我们发现,我们的人类框架框架允许自动评分模型和人类分级器达到目标评分质量。
translated by 谷歌翻译
了解培训实例对神经网络模型的影响导致提高解释性。但是,评估影响是困难和效率低下,这示出了如果未使用训练实例,则显示如何更改模型的预测。在本文中,我们提出了一种估计影响的有效方法。我们的方法是通过丢弃的启发,零掩模了子网并阻止子网学习每个训练实例。通过在丢弃掩码之间切换,我们可以使用学习或未学习每个培训实例的子网并估计其影响力。通过对分类数据集的BERT和VGGNET的实验,我们证明了该方法可以捕获训练影响,增强误差预测的可解释性,并清除培训数据集以改善概括。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译
Technology advancements in wireless communications and high-performance Extended Reality (XR) have empowered the developments of the Metaverse. The demand for Metaverse applications and hence, real-time digital twinning of real-world scenes is increasing. Nevertheless, the replication of 2D physical world images into 3D virtual world scenes is computationally intensive and requires computation offloading. The disparity in transmitted scene dimension (2D as opposed to 3D) leads to asymmetric data sizes in uplink (UL) and downlink (DL). To ensure the reliability and low latency of the system, we consider an asynchronous joint UL-DL scenario where in the UL stage, the smaller data size of the physical world scenes captured by multiple extended reality users (XUs) will be uploaded to the Metaverse Console (MC) to be construed and rendered. In the DL stage, the larger-size 3D virtual world scenes need to be transmitted back to the XUs. The decisions pertaining to computation offloading and channel assignment are optimized in the UL stage, and the MC will optimize power allocation for users assigned with a channel in the UL transmission stage. Some problems arise therefrom: (i) interactive multi-process chain, specifically Asynchronous Markov Decision Process (AMDP), (ii) joint optimization in multiple processes, and (iii) high-dimensional objective functions, or hybrid reward scenarios. To ensure the reliability and low latency of the system, we design a novel multi-agent reinforcement learning algorithm structure, namely Asynchronous Actors Hybrid Critic (AAHC). Extensive experiments demonstrate that compared to proposed baselines, AAHC obtains better solutions with preferable training time.
translated by 谷歌翻译