尽管政府的信息运动和谁努力,但Covid-19疫苗犹豫不决是广泛的。其背后的原因之一是疫苗虚假信息在社交媒体中广泛传播。特别是,最近的调查确定,疫苗的虚假信息正在影响COVID-19-19疫苗接种的负面信任。同时,由于大规模的社交媒体,事实检查者正在努力检测和跟踪疫苗虚假信息。为了帮助事实检查员在线监视疫苗叙事,本文研究了一项新的疫苗叙事分类任务,该任务将Covid-19疫苗主张的疫苗索赔分为七个类别之一。遵循数据增强方法,我们首先为这项新的分类任务构建了一个新颖的数据集,重点是少数群体。我们还利用事实检查器注释的数据。该论文还提出了神经疫苗叙事分类器,在交叉验证下达到84%的精度。分类器可公开用于研究人员和记者。
translated by 谷歌翻译