在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
最近在文献中引入了用于视频异常检测的自我监督的多任务学习(SSMTL)框架。由于其准确的结果,该方法吸引了许多研究人员的注意。在这项工作中,我们重新审视了自我监督的多任务学习框架,并提出了对原始方法的几个更新。首先,我们研究各种检测方法,例如基于使用光流或背景减法检测高运动区域,因为我们认为当前使用的预训练的Yolov3是次优的,例如从未检测到运动中的对象或来自未知类的对象。其次,我们通过引入多头自发项模块的启发,通过引入多头自我发项模块,使3D卷积骨干链现代化。因此,我们替代地引入了2D和3D卷积视觉变压器(CVT)块。第三,为了进一步改善模型,我们研究了其他自我监督的学习任务,例如通过知识蒸馏来预测细分图,解决拼图拼图,通过知识蒸馏估算身体的姿势,预测掩盖的区域(Inpaining)和对抗性学习具有伪异常。我们进行实验以评估引入变化的性能影响。在找到框架的更有希望的配置后,称为SSMTL ++ V1和SSMTL ++ V2后,我们将初步实验扩展到了更多数据集,表明我们的性能提高在所有数据集中都是一致的。在大多数情况下,我们在大道,上海the夫和Ubnormal上的结果将最新的表现提升到了新的水平。
translated by 谷歌翻译
Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced with the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey we analyze main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled as input-level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
According to the latest trend of artificial intelligence, AI-systems needs to clarify regarding general,specific decisions,services provided by it. Only consumer is satisfied, with explanation , for example, why any classification result is the outcome of any given time. This actually motivates us using explainable or human understandable AI for a behavioral mining scenario, where users engagement on digital platform is determined from context, such as emotion, activity, weather, etc. However, the output of AI-system is not always systematically correct, and often systematically correct, but apparently not-perfect and thereby creating confusions, such as, why the decision is given? What is the reason underneath? In this context, we first formulate the behavioral mining problem in deep convolutional neural network architecture. Eventually, we apply a recursive neural network due to the presence of time-series data from users physiological and environmental sensor-readings. Once the model is developed, explanations are presented with the advent of XAI models in front of users. This critical step involves extensive trial with users preference on explanations over conventional AI, judgement of credibility of explanation.
translated by 谷歌翻译
Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.
translated by 谷歌翻译
Before the transition of AVs to urban roads and subsequently unprecedented changes in traffic conditions, evaluation of transportation policies and futuristic road design related to pedestrian crossing behavior is of vital importance. Recent studies analyzed the non-causal impact of various variables on pedestrian waiting time in the presence of AVs. However, we mainly investigate the causal effect of traffic density on pedestrian waiting time. We develop a Double/Debiased Machine Learning (DML) model in which the impact of confounders variable influencing both a policy and an outcome of interest is addressed, resulting in unbiased policy evaluation. Furthermore, we try to analyze the effect of traffic density by developing a copula-based joint model of two main components of pedestrian crossing behavior, pedestrian stress level and waiting time. The copula approach has been widely used in the literature, for addressing self-selection problems, which can be classified as a causality analysis in travel behavior modeling. The results obtained from copula approach and DML are compared based on the effect of traffic density. In DML model structure, the standard error term of density parameter is lower than copula approach and the confidence interval is considerably more reliable. In addition, despite the similar sign of effect, the copula approach estimates the effect of traffic density lower than DML, due to the spurious effect of confounders. In short, the DML model structure can flexibly adjust the impact of confounders by using machine learning algorithms and is more reliable for planning future policies.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
Handwriting Recognition has been a field of great interest in the Artificial Intelligence domain. Due to its broad use cases in real life, research has been conducted widely on it. Prominent work has been done in this field focusing mainly on Latin characters. However, the domain of Arabic handwritten character recognition is still relatively unexplored. The inherent cursive nature of the Arabic characters and variations in writing styles across individuals makes the task even more challenging. We identified some probable reasons behind this and proposed a lightweight Convolutional Neural Network-based architecture for recognizing Arabic characters and digits. The proposed pipeline consists of a total of 18 layers containing four layers each for convolution, pooling, batch normalization, dropout, and finally one Global average pooling and a Dense layer. Furthermore, we thoroughly investigated the different choices of hyperparameters such as the choice of the optimizer, kernel initializer, activation function, etc. Evaluating the proposed architecture on the publicly available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic handwritten digits Database (MadBase)' datasets, the proposed model respectively achieved an accuracy of 96.93% and 99.35% which is comparable to the state-of-the-art and makes it a suitable solution for real-life end-level applications.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译