注意层是现代端到端自动语音识别系统不可或缺的一部分,例如作为变压器或构象体体系结构的一部分。注意通常是多头的,每个头部都有一组独立的学习参数,并在相同的输入特征序列上运行。多头注意的输出是单个头部输出的融合。我们经验分析了不同注意力头部产生的表示之间的多样性,并证明在训练过程中头部高度相关。我们研究了一些增加注意力头多样性的方法,包括为每个头部使用不同的注意力机制和辅助训练损失功能来促进头部多样性。我们表明,在训练过程中引入多样性辅助损失功能是一种更有效的方法,并且在Librispeech语料库上获得了多达6%的相对相对的改善。最后,我们在注意力头的多样性与头部参数梯度的相似性之间建立了联系。
translated by 谷歌翻译
Self-supervised learning (SSL) aims to produce useful feature representations without access to any human-labeled data annotations. Due to the success of recent SSL methods based on contrastive learning, such as SimCLR, this problem has gained popularity. Most current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective and then discard the learned projection head after training. This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training? In this work, we first perform a systematic study on the behavior of SSL training focusing on the role of the projection head layers. By formulating the projection head as a parametric component for the InfoNCE objective rather than a part of the network, we present an alternative optimization scheme for training contrastive learning based SSL frameworks. Our experimental study on multiple image classification datasets demonstrates the effectiveness of the proposed approach over alternatives in the SSL literature.
translated by 谷歌翻译
Foundation models are redefining how AI systems are built. Practitioners now follow a standard procedure to build their machine learning solutions: download a copy of a foundation model, and fine-tune it using some in-house data about the target task of interest. Consequently, the Internet is swarmed by a handful of foundation models fine-tuned on many diverse tasks. Yet, these individual fine-tunings often lack strong generalization and exist in isolation without benefiting from each other. In our opinion, this is a missed opportunity, as these specialized models contain diverse features. Based on this insight, we propose model recycling, a simple strategy that leverages multiple fine-tunings of the same foundation model on diverse auxiliary tasks, and repurposes them as rich and diverse initializations for the target task. Specifically, model recycling fine-tunes in parallel each specialized model on the target task, and then averages the weights of all target fine-tunings into a final model. Empirically, we show that model recycling maximizes model diversity by benefiting from diverse auxiliary tasks, and achieves a new state of the art on the reference DomainBed benchmark for out-of-distribution generalization. Looking forward, model recycling is a contribution to the emerging paradigm of updatable machine learning where, akin to open-source software development, the community collaborates to incrementally and reliably update machine learning models.
translated by 谷歌翻译
Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.
translated by 谷歌翻译
One of the major errors affecting GNSS signals in urban canyons is GNSS multipath error. In this work, we develop a Gazebo plugin which utilizes a ray tracing technique to account for multipath effects in a virtual urban canyon environment using virtual satellites. This software plugin balances accuracy and computational complexity to run the simulation in real-time for both software-in-the-loop (SITL) and hardware-in-the-loop (HITL) testing. We also construct a 3D virtual environment of Hong Kong and compare the results from our plugin with the GNSS data in the publicly available Urban-Nav dataset, to validate the efficacy of the proposed Gazebo Plugin. The plugin is openly available to all the researchers in the robotics community. https://github.com/kpant14/multipath_sim
translated by 谷歌翻译
Synthetic data offers the promise of cheap and bountiful training data for settings where lots of labeled real-world data for tasks is unavailable. However, models trained on synthetic data significantly underperform on real-world data. In this paper, we propose Proportional Amplitude Spectrum Training Augmentation (PASTA), a simple and effective augmentation strategy to improve out-of-the-box synthetic-to-real (syn-to-real) generalization performance. PASTA involves perturbing the amplitude spectrums of the synthetic images in the Fourier domain to generate augmented views. We design PASTA to perturb the amplitude spectrums in a structured manner such that high-frequency components are perturbed relatively more than the low-frequency ones. For the tasks of semantic segmentation (GTAV to Real), object detection (Sim10K to Real), and object recognition (VisDA-C Syn to Real), across a total of 5 syn-to-real shifts, we find that PASTA outperforms more complex state-of-the-art generalization methods while being complementary to the same.
translated by 谷歌翻译
Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.
translated by 谷歌翻译
Pictionary, the popular sketch-based guessing game, provides an opportunity to analyze shared goal cooperative game play in restricted communication settings. However, some players occasionally draw atypical sketch content. While such content is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the game experience. To address such situations in a timely and scalable manner, we introduce DrawMon, a novel distributed framework for automatic detection of atypical sketch content in concurrently occurring Pictionary game sessions. We build specialized online interfaces to collect game session data and annotate atypical sketch content, resulting in AtyPict, the first ever atypical sketch content dataset. We use AtyPict to train CanvasNet, a deep neural atypical content detection network. We utilize CanvasNet as a core component of DrawMon. Our analysis of post deployment game session data indicates DrawMon's effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our contributions also serve as a design guide for customized atypical content response systems involving shared and interactive whiteboards. Code and datasets are available at https://drawm0n.github.io.
translated by 谷歌翻译
The presence of bias in deep models leads to unfair outcomes for certain demographic subgroups. Research in bias focuses primarily on facial recognition and attribute prediction with scarce emphasis on face detection. Existing studies consider face detection as binary classification into 'face' and 'non-face' classes. In this work, we investigate possible bias in the domain of face detection through facial region localization which is currently unexplored. Since facial region localization is an essential task for all face recognition pipelines, it is imperative to analyze the presence of such bias in popular deep models. Most existing face detection datasets lack suitable annotation for such analysis. Therefore, we web-curate the Fair Face Localization with Attributes (F2LA) dataset and manually annotate more than 10 attributes per face, including facial localization information. Utilizing the extensive annotations from F2LA, an experimental setup is designed to study the performance of four pre-trained face detectors. We observe (i) a high disparity in detection accuracies across gender and skin-tone, and (ii) interplay of confounding factors beyond demography. The F2LA data and associated annotations can be accessed at http://iab-rubric.org/index.php/F2LA.
translated by 谷歌翻译
可识别表示学习的理论旨在构建通用方法,从低水平的感觉数据中提取高级潜在(因果)因素。大多数现有的作品都集中在可识别的表示学习中,并依赖于对潜在因素(因果)因素的分配假设。但是,实际上,我们通常还可以访问用于表示学习的介入数据。我们如何利用介入数据来帮助识别高级潜在的潜伏期?为此,我们探讨了在这项工作中可识别的代表学习中介入数据的作用。我们研究潜在因果因素在没有介入数据的情况下,在未介入数据的情况下,在最小的分布假设上。我们证明,如果真实的潜在变量通过多项式函数映射到观察到的高维数据,则通过最小化自动装饰器的标准重建损失来表示学习,将确定真正的潜在潜在的潜在潜在转化。如果我们进一步访问了由硬$ $ do $ $干预产生的干预数据,那么我们就可以识别出这些干预潜在的潜在潜在的潜在潜在的潜在潜在的潜在潜在的潜伏期。
translated by 谷歌翻译