虽然数据驱动的材料科学和化学方法采用了令人兴奋的,早期的阶段,实现了机器学习模型的真正潜力,以实现科学发现,它们必须具有超出纯粹预测力的品质。模型的预测和内在工作应由人类专家提供一定程度的解释性,允许识别潜在的模型问题或限制,建立对模型预测的信任和揭示可能导致科学洞察力的意外相关性。在这项工作中,我们总结了对材料科学和化学的可解释性和解释性技术的应用,并讨论了这些技术如何改善科学研究的结果。我们讨论了材料科学中可解释机器学习的各种挑战,更广泛地在科学环境中。特别是,我们强调通过纯粹解释机器学习模型和模型解释的不确定性估计的不确定估计来强调推断因果关系或达到泛化的风险。最后,我们在其他领域展示了一些可能会使物质科学和化学问题的可解释性的令人兴奋的发展。
translated by 谷歌翻译
Machine learning model development and optimisation can be a rather cumbersome and resource-intensive process. Custom models are often more difficult to build and deploy, and they require infrastructure and expertise which are often costly to acquire and maintain. Machine learning product development lifecycle must take into account the need to navigate the difficulties of developing and deploying machine learning models. evoML is an AI-powered tool that provides automated functionalities in machine learning model development, optimisation, and model code optimisation. Core functionalities of evoML include data cleaning, exploratory analysis, feature analysis and generation, model optimisation, model evaluation, model code optimisation, and model deployment. Additionally, a key feature of evoML is that it embeds code and model optimisation into the model development process, and includes multi-objective optimisation capabilities.
translated by 谷歌翻译
We present Hybrid Infused Reranking for Passages Retrieval (HYRR), a framework for training rerankers based on a hybrid of BM25 and neural retrieval models. Retrievers based on hybrid models have been shown to outperform both BM25 and neural models alone. Our approach exploits this improved performance when training a reranker, leading to a robust reranking model. The reranker, a cross-attention neural model, is shown to be robust to different first-stage retrieval systems, achieving better performance than rerankers simply trained upon the first-stage retrievers in the multi-stage systems. We present evaluations on a supervised passage retrieval task using MS MARCO and zero-shot retrieval tasks using BEIR. The empirical results show strong performance on both evaluations.
translated by 谷歌翻译
Scholarly text is often laden with jargon, or specialized language that divides disciplines. We extend past work that characterizes science at the level of word types, by using BERT-based word sense induction to find additional words that are widespread but overloaded with different uses across fields. We define scholarly jargon as discipline-specific word types and senses, and estimate its prevalence across hundreds of fields using interpretable, information-theoretic metrics. We demonstrate the utility of our approach for science of science and computational sociolinguistics by highlighting two key social implications. First, we measure audience design, and find that most fields reduce jargon when publishing in general-purpose journals, but some do so more than others. Second, though jargon has varying correlation with articles' citation rates within fields, it nearly always impedes interdisciplinary impact. Broadly, our measurements can inform ways in which language could be revised to serve as a bridge rather than a barrier in science.
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
The recent advent of large language models - large neural networks trained on a simple predictive objective over a massive corpus of natural language - has reinvigorated debate over whether human cognitive capacities might emerge in such generic models given sufficient training data. Of particular interest is the ability of these models to reason about novel problems zero-shot, without any direct training on those problems. In human cognition, this capacity is closely tied to an ability to reason by analogy. Here, we performed a direct comparison between human reasoners and a large language model (GPT-3) on a range of analogical tasks, including a novel text-based matrix reasoning task closely modeled on Raven's Progressive Matrices. We found that GPT-3 displayed a surprisingly strong capacity for abstract pattern induction, matching or even surpassing human capabilities in most settings. Our results indicate that large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems.
translated by 谷歌翻译
Developments in autonomous vehicles (AVs) are rapidly advancing and will in the next 20 years become a central part to our society. However, especially in the early stages of deployment, there is expected to be incidents involving AVs. In the event of AV incidents, decisions will need to be made that require ethical decisions, e.g., deciding between colliding into a group of pedestrians or a rigid barrier. For an AV to undertake such ethical decision making and path planning, simulation models of the situation will be required that are used in real-time on-board the AV. These models will enable path planning and ethical decision making to be undertaken based on predetermined collision injury severity levels. In this research, models are developed for the path planning and ethical decision making that predetermine knowledge regarding the possible collision injury severities, i.e., peak deformation of the AV colliding into the rigid barrier or the impact velocity of the AV colliding into a pedestrian. Based on such knowledge and using fuzzy logic, a novel nonlinear weighted utility cost function for the collision injury severity levels is developed. This allows the model-based predicted collision outcomes arising from AV peak deformation and AV-pedestrian impact velocity to be examined separately via weighted utility cost functions with a common structure. The general form of the weighted utility cost function exploits a fuzzy sets approach, thus allowing common utility costs from the two separate utility cost functions to be meaningfully compared. A decision-making algorithm, which makes use of a utilitarian ethical approach, ensures that the AV will always steer onto the path which represents the lowest injury severity level, hence utility cost to society.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译