针对目标的对话任务的先前研究缺乏关键观念,该观念在以目标为导向的人工智能代理的背景下进行了深入研究。在这项研究中,我们提出了目标引导的开放域对话计划(TGCP)任务的任务,以评估神经对话代理是否具有目标对话计划的能力。使用TGCP任务,我们研究了现有检索模型和最新强生成模型的对话计划能力。实验结果揭示了当前技术面临的挑战。
translated by 谷歌翻译
避免产生与先前环境相矛盾的响应是对话响应产生的重大挑战。一种可行的方法是后处理,例如从最终的n-最佳响应列表中滤除矛盾的响应。在这种情况下,n-最佳列表的质量极大地影响了矛盾的发生,因为最终响应是从该最佳列表中选择的。这项研究定量地分析了使用N最佳列表的一致性对神经反应产生模型的上下文矛盾意识。特别是,我们将极性问题用作简洁和定量分析的刺激输入。我们的测试说明了最近的神经反应产生模型和方法的矛盾意识,然后讨论了它们的性质和局限性。
translated by 谷歌翻译
我们介绍了Realtime QA,这是一个动态的问答(QA)平台,该平台宣布问题并定期评估系统(此版本每周)。实时质量检查询问当前世界,质量检查系统需要回答有关新事件或信息的问题。因此,它挑战了QA数据集中的静态,常规假设,并追求瞬时应用。我们在包括GPT-3和T5在内的大型语言模型上建立了强大的基线模型。我们的基准是一项持续的努力,该初步报告在过去一个月中提出了实时评估结果。我们的实验结果表明,GPT-3通常可以根据新的退休文档正确更新其生成结果,从而突出了最新信息检索的重要性。尽管如此,我们发现GPT-3倾向于在检索文件时返回过时的答案,这些文件没有提供足够的信息来找到答案。这表明了未来研究的重要途径:开放式域质量检查系统是否可以确定无法回答的案例,并与用户甚至检索模块进行通信以修改检索结果?我们希望实时质量检查能够刺激问题答案及其他问题的瞬时应用。
translated by 谷歌翻译
简短的答案评分(SAS)是对学习者编写的简短文本的任务。近年来,基于深度学习的方法显着改善了SAS模型的性能,但是如何在将此类模型应用于教育领域时,如何保证高质量的预测仍然是一个关键问题。为了确保高质量的预测,我们介绍了探索人类在循环框架中使用分级成本的第一个研究,同时通过允许SAS模型与人类分级器共享分级任务,以确保分级质量。具体而言,通过引入指示模型预测可靠性的置信度估计方法,可以通过仅利用对评分结果可靠性高的预测来保证评分质量,并对人类分级的可靠性低可靠性。在我们的实验中,我们使用多个置信度估计方法和多个SAS数据集研究了提出的框架的可行性。我们发现,我们的人类框架框架允许自动评分模型和人类分级器达到目标评分质量。
translated by 谷歌翻译
提供有关学习者论证的反馈对于发展批判性思维技能至关重要,但是,它需要大量的时间和精力。为了减轻教师的过载,我们旨在自动化提供反馈的过程,尤其是给出诊断评论,以指出论点固有的弱点。建议给出特定的诊断评论,以便学习者可以识别诊断而不会误解。但是,如何制定提供特定的诊断评论的任务并不明显。我们将任务的表述作为模板选择和插槽填充,以使自动评估变得更加容易,并且模型的行为更加可行。该公式的关键是创建足以实用的模板集的可能性。在本文中,我们定义了三个标准,即模板集应满足:表达性,信息性和唯一性,并验证创建一个满足这些标准作为第一个试验的模板集的可行性。我们将通过一项注释研究证明,将文本中给出的诊断评论转换为模板格式是可行的。注释研究中使用的语料库公开可用。
translated by 谷歌翻译
了解培训实例对神经网络模型的影响导致提高解释性。但是,评估影响是困难和效率低下,这示出了如果未使用训练实例,则显示如何更改模型的预测。在本文中,我们提出了一种估计影响的有效方法。我们的方法是通过丢弃的启发,零掩模了子网并阻止子网学习每个训练实例。通过在丢弃掩码之间切换,我们可以使用学习或未学习每个培训实例的子网并估计其影响力。通过对分类数据集的BERT和VGGNET的实验,我们证明了该方法可以捕获训练影响,增强误差预测的可解释性,并清除培训数据集以改善概括。
translated by 谷歌翻译
Utilizing the latest advances in Artificial Intelligence (AI), the computer vision community is now witnessing an unprecedented evolution in all kinds of perception tasks, particularly in object detection. Based on multiple spatially separated perception nodes, Cooperative Perception (CP) has emerged to significantly advance the perception of automated driving. However, current cooperative object detection methods mainly focus on ego-vehicle efficiency without considering the practical issues of system-wide costs. In this paper, we introduce VINet, a unified deep learning-based CP network for scalable, lightweight, and heterogeneous cooperative 3D object detection. VINet is the first CP method designed from the standpoint of large-scale system-level implementation and can be divided into three main phases: 1) Global Pre-Processing and Lightweight Feature Extraction which prepare the data into global style and extract features for cooperation in a lightweight manner; 2) Two-Stream Fusion which fuses the features from scalable and heterogeneous perception nodes; and 3) Central Feature Backbone and 3D Detection Head which further process the fused features and generate cooperative detection results. A cooperative perception platform is designed and developed for CP dataset acquisition and several baselines are compared during the experiments. The experimental analysis shows that VINet can achieve remarkable improvements for pedestrians and cars with 2x less system-wide computational costs and 12x less system-wide communicational costs.
translated by 谷歌翻译
Telework "avatar work," in which people with disabilities can engage in physical work such as customer service, is being implemented in society. In order to enable avatar work in a variety of occupations, we propose a mobile sales system using a mobile frozen drink machine and an avatar robot "OriHime", focusing on mobile customer service like peddling. The effect of the peddling by the system on the customers are examined based on the results of video annotation.
translated by 谷歌翻译
Our team, Hibikino-Musashi@Home (the shortened name is HMA), was founded in 2010. It is based in the Kitakyushu Science and Research Park, Japan. We have participated in the RoboCup@Home Japan open competition open platform league every year since 2010. Moreover, we participated in the RoboCup 2017 Nagoya as open platform league and domestic standard platform league teams. Currently, the Hibikino-Musashi@Home team has 20 members from seven different laboratories based in the Kyushu Institute of Technology. In this paper, we introduce the activities of our team and the technologies.
translated by 谷歌翻译
感知环境是实现合作驾驶自动化(CDA)的最基本关键之一,该关键被认为是解决当代运输系统的安全性,流动性和可持续性问题的革命性解决方案。尽管目前在计算机视觉的物体感知领域正在发生前所未有的进化,但由于不可避免的物理遮挡和单辆车的接受程度有限,最先进的感知方法仍在与复杂的现实世界流量环境中挣扎系统。基于多个空间分离的感知节点,合作感知(CP)诞生是为了解锁驱动自动化的感知瓶颈。在本文中,我们全面审查和分析了CP的研究进度,据我们所知,这是第一次提出统一的CP框架。审查了基于不同类型的传感器的CP系统的体系结构和分类学,以显示对CP系统的工作流程和不同结构的高级描述。对节点结构,传感器模式和融合方案进行了审查和分析,并使用全面的文献进行了详细的解释。提出了分层CP框架,然后对现有数据集和模拟器进行审查,以勾勒出CP的整体景观。讨论重点介绍了当前的机会,开放挑战和预期的未来趋势。
translated by 谷歌翻译