Reinforcement Learning is a powerful tool to model decision-making processes. However, it relies on an exploration-exploitation trade-off that remains an open challenge for many tasks. In this work, we study neighboring state-based, model-free exploration led by the intuition that, for an early-stage agent, considering actions derived from a bounded region of nearby states may lead to better actions when exploring. We propose two algorithms that choose exploratory actions based on a survey of nearby states, and find that one of our methods, ${\rho}$-explore, consistently outperforms the Double DQN baseline in an discrete environment by 49\% in terms of Eval Reward Return.
translated by 谷歌翻译
In the era of big astronomical surveys, our ability to leverage artificial intelligence algorithms simultaneously for multiple datasets will open new avenues for scientific discovery. Unfortunately, simply training a deep neural network on images from one data domain often leads to very poor performance on any other dataset. Here we develop a Universal Domain Adaptation method DeepAstroUDA, capable of performing semi-supervised domain alignment that can be applied to datasets with different types of class overlap. Extra classes can be present in any of the two datasets, and the method can even be used in the presence of unknown classes. For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets (from SDSS and DECaLS). We show that our method is capable of bridging the gap between two astronomical surveys, and also performs well for anomaly detection and clustering of unknown data in the unlabeled dataset. We apply our model to two examples of galaxy morphology classification tasks with anomaly detection: 1) classifying spiral and elliptical galaxies with detection of merging galaxies (three classes including one unknown anomaly class); 2) a more granular problem where the classes describe more detailed morphological properties of galaxies, with the detection of gravitational lenses (ten classes including one unknown anomaly class).
translated by 谷歌翻译
可靠的概括是安全ML和AI的核心。但是,了解神经网络何时以及如何推广仍然是该领域最重要的未解决问题之一。在这项工作中,我们进行了一项广泛的实证研究(2200个模型,16个任务),以研究计算理论中的见解是否可以预测实践中神经网络概括的局限性。我们证明,根据Chomsky层次结构进行分组任务使我们能够预测某些架构是否能够推广到分布外输入。这包括负面结果,即使大量数据和训练时间也不会导致任何非平凡的概括,尽管模型具有足够的能力完美地适合培训数据。我们的结果表明,对于我们的任务子集,RNN和变形金刚无法概括非规范的任务,LSTMS可以解决常规和反语言任务,并且只有通过结构化内存(例如堆栈或存储器磁带)可以增强的网络可以成功地概括了无上下文和上下文敏感的任务。
translated by 谷歌翻译
宇宙学调查实验中的数据处理和分析管道引入了数据扰动,可以显着降低基于深度学习的模型的性能。鉴于加工和分析宇宙学调查数据的监督深度学习方法的增加,数据扰动效应的评估以及增加模型稳健性的方法的发展越来越重要。在星系形态分类的背景下,我们研究了扰动在成像数据中的影响。特别是,我们在基线数据培训和扰动数据测试时检查使用神经网络的后果。我们考虑与两个主要来源相关的扰动:1)通过泊松噪声和2)诸如图像压缩或望远镜误差的图像压缩或望远粉误差所产生的步骤所产生的数据处理噪声提高了观测噪声。我们还测试了域适应技术在减轻扰动驱动误差时的功效。我们使用分类准确性,潜在空间可视化和潜在空间距离来评估模型稳健性。如果没有域适应,我们发现处理像素级别错误容易将分类翻转成一个不正确的类,并且更高的观察噪声使得模型在低噪声数据上培训无法对Galaxy形态进行分类。另一方面,我们表明,具有域适应的培训改善了模型稳健性并减轻了这些扰动的影响,以更高的观测噪声的数据提高了23%的分类精度。域适应也增加了基线与错误分类的错误分类的潜在空间距离〜2.3的倍数距离,使模型更强大地扰动。
translated by 谷歌翻译
从限制黑暗部门的暗物质颗粒的生产可能导致许多新颖的实验签名。根据理论的细节,质子 - 质子碰撞中的黑暗夸克生产可能导致颗粒的半衰期:黑暗强度的准直喷雾,其中颗粒碰撞器实验只有一些。实验签名的特征在于,具有与喷射器的可见部件相结合的重建缺失的动量。这种复杂的拓扑对检测器效率低下和错误重建敏感,从而产生人为缺失的势头。通过这项工作,我们提出了一种信号不可知的策略来拒绝普通喷射,并通过异常检测技术鉴定半衰期喷射。具有喷射子结构变量的深度神经自动化器网络作为输入,证明了对分析异常喷射的非常有用。该研究重点介绍了半意射流签名;然而,该技术可以适用于任何新的物理模型,该模型预测来自非SM粒子的喷射器的签名。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
Learning efficient and interpretable policies has been a challenging task in reinforcement learning (RL), particularly in the visual RL setting with complex scenes. While neural networks have achieved competitive performance, the resulting policies are often over-parameterized black boxes that are difficult to interpret and deploy efficiently. More recent symbolic RL frameworks have shown that high-level domain-specific programming logic can be designed to handle both policy learning and symbolic planning. However, these approaches rely on coded primitives with little feature learning, and when applied to high-dimensional visual scenes, they can suffer from scalability issues and perform poorly when images have complex object interactions. To address these challenges, we propose \textit{Differentiable Symbolic Expression Search} (DiffSES), a novel symbolic learning approach that discovers discrete symbolic policies using partially differentiable optimization. By using object-level abstractions instead of raw pixel-level inputs, DiffSES is able to leverage the simplicity and scalability advantages of symbolic expressions, while also incorporating the strengths of neural networks for feature learning and optimization. Our experiments demonstrate that DiffSES is able to generate symbolic policies that are simpler and more and scalable than state-of-the-art symbolic RL methods, with a reduced amount of symbolic prior knowledge.
translated by 谷歌翻译