Detection and recognition of a licence plate is important when automating weighbridge services. While many large databases are available for Latin and Chinese alphanumeric license plates, data for Indian License Plates is inadequate. In particular, databases of Indian commercial truck license plates are inadequate, despite the fact that commercial vehicle license plate recognition plays a profound role in terms of logistics management and weighbridge automation. Moreover, models to recognise license plates are not effectively able to generalise to such data due to its challenging nature, and due to the abundant frequency of handwritten license plates, leading to the usage of diverse font styles. Thus, a database and effective models to recognise and detect such license plates are crucial. This paper provides a database on commercial truck license plates, and using state-of-the-art models in real-time object Detection: You Only Look Once Version 7, and SceneText Recognition: Permuted Autoregressive Sequence Models, our method outperforms the other cited references where the maximum accuracy obtained was less than 90%, while we have achieved 95.82% accuracy in our algorithm implementation on the presented challenging license plate dataset. Index Terms- Automatic License Plate Recognition, character recognition, license plate detection, vision transformer.
translated by 谷歌翻译
现代自动驾驶汽车系统使用复杂的感知和控制组件,必须应对从传感器收到的不确定数据。为了估计此类车辆保持安全状态的可能性,开发人员经常采用耗时的模拟方法。本文提出了一种基于广义多项式混乱(GPC)的车辆系统中自治管道的替代方法。我们还提出了气体,这是第一种用于创建和使用复杂车辆系统的GPC模型的算法。气体用感知模型代替了复杂的感知成分,以降低复杂性。然后,它构建了GPC模型,并将其用于估计状态分布和/或输入不安全状态的概率。我们在农作物管理车辆,自动驾驶汽车和空中无人机中使用的五种情况下评估气体 - 每个系统都使用至少一个复杂的感知或控制组件。我们表明,气体计算的状态分布与蒙特卡洛模拟所产生的分布非常匹配,同时也提供2.3倍-3.0倍的加速。
translated by 谷歌翻译
联合学习(FL)允许在几个计算设备上进行协作汇总的学习信息,并在其中共享相同的信息,从而解决隐私问题和巨大的带宽。 FL技术通常使用中央服务器或云来汇总从设备接收的模型。这种集中的FL技术遭受了固有的问题,例如中央节点的故障和频道带宽中的瓶颈。当FL与用作设备的连接机器人结合使用时,中央控制实体的故障会导致混乱的情况。本文介绍了基于移动代理的范例,以分散多机器人方案中的FL。我们使用Webot,一种流行的免费开源机器人模拟器和移动代理平台塔塔鲁斯(Tartarus),我们提出了一种方法,以在一组连接的机器人中分散联合学习。通过在不同的连接计算系统上运行的Webot,我们显示移动代理如何执行分散的联合加固学习(DFRL)的任务。通过使用Q-学习和SARSA进行的实验获得的结果,通过汇总其相应的Q表,显示出在机器人技术域中使用分散的FL的生存能力。由于所提出的工作可以与其他学习算法和真正的机器人结合使用,因此它可以用来使用异质学习算法在多机器人方案中同时使用异质学习算法进行研究。
translated by 谷歌翻译
对象检测,车道检测和分割的卷积神经网络(CNN)现在坐在大多数自主管道的头部,然而,他们的安全分析仍然是一个重要的挑战。对感知模型的正式分析是根本困难的,因为他们的正确性是难以指定的,如果不是不可能指定。我们提出了一种从系统级安全要求,数据和从感知下游的模块的模块的识字模型推断出可理解和安全抽象的技术。该技术可以帮助在创建抽象和随后的验证方面进行权衡安全性,大小和精度。我们将该方法应用于基于高保真仿真(a)用于自主车辆的视觉的车道保持控制器的两个重要案例研究,并且(b)用于农业机器人的控制器。我们展示了所生成的抽象如何与下游模块组成,然后可以使用像CBMC等程序分析工具验证所产生的抽象系统。详细评估规模,安全要求和环境参数(例如,照明,路面,植物类型)对所产生的抽象精度的影响表明,该方法可以帮助指导寻找角落案例和安全操作包围。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-balanced Re-weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority predicate performances. It has not yet correctly analyzed the trade-off between majority and minority predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-balanced Re-weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged by the skewness of biased predicate predictions, the SCR estimates the target predicate weight coefficient and then re-weights more to the biased predicates for better trading-off between the majority predicates and the minority ones. Extensive experiments conducted on the standard Visual Genome dataset and Open Image V4 \& V6 show the performances and generality of the SCR with the traditional SGG models.
translated by 谷歌翻译
In this paper we discuss the theory used in the design of an open source lightmorphic signatures analysis toolkit (LSAT). In addition to providing a core functionality, the software package enables specific optimizations with its modular and customizable design. To promote its usage and inspire future contributions, LSAT is publicly available. By using a self-supervised neural network and augmented machine learning algorithms, LSAT provides an easy-to-use interface with ample documentation. The experiments demonstrate that LSAT improves the otherwise tedious and error-prone tasks of translating lightmorphic associated data into usable spectrograms, enhanced with parameter tuning and performance analysis. With the provided mathematical functions, LSAT validates the nonlinearity encountered in the data conversion process while ensuring suitability of the forecasting algorithms.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译