收集与特定API方法相关的API示例,用法和提及在诸如堆栈溢出之类的场地上的讨论中不是一个微不足道的问题。它需要努力正确认识讨论是否指的是开发人员/工具正在搜索的API方法。线程的内容包括描述API方法在讨论中的参与和包含API调用的代码片段中的文本段落,可以参考给定的API方法。利用此观察,我们开发FacOS,一种特定于背景算法,可以在讨论中捕获段落和代码片段的语义和语法信息。FACOS将基于语法的单词的分数与来自Codebert的精细调整的预测模型的分数相结合。Facos在F1分数方面将最先进的方法击败了13.9%。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.
translated by 谷歌翻译
Out-of-distribution (OOD) generalisation aims to build a model that can well generalise its learnt knowledge from source domains to an unseen target domain. However, current image classification models often perform poorly in the OOD setting due to statistically spurious correlations learning from model training. From causality-based perspective, we formulate the data generation process in OOD image classification using a causal graph. On this graph, we show that prediction P(Y|X) of a label Y given an image X in statistical learning is formed by both causal effect P(Y|do(X)) and spurious effects caused by confounding features (e.g., background). Since the spurious features are domain-variant, the prediction P(Y|X) becomes unstable on unseen domains. In this paper, we propose to mitigate the spurious effect of confounders using front-door adjustment. In our method, the mediator variable is hypothesized as semantic features that are essential to determine a label for an image. Inspired by capability of style transfer in image generation, we interpret the combination of the mediator variable with different generated images in the front-door formula and propose novel algorithms to estimate it. Extensive experimental results on widely used benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
无数据知识蒸馏(DFKD)最近引起了人们的关注,这要归功于其在不使用培训数据的情况下将知识从教师网络转移到学生网络的吸引力。主要思想是使用发电机合成数据以培训学生。随着发电机的更新,合成数据的分布将发生变化。如果发电机和学生接受对手的训练,使学生忘记了先前一步获得的知识,则这种分配转换可能会很大。为了减轻这个问题,我们提出了一种简单而有效的方法,称为动量对抗蒸馏(MAD),该方法维持了发电机的指数移动平均值(EMA)副本,并使用发电机和EMA生成器的合成样品来培训学生。由于EMA发电机可以被视为发电机旧版本的合奏,并且与发电机相比,更新的更改通常会发生较小的变化,因此对其合成样本进行培训可以帮助学生回顾过去的知识,并防止学生适应太快的速度发电机的新更新。我们在六个基准数据集上进行的实验,包括ImageNet和Place365,表明MAD的性能优于竞争方法来处理大型分配转移问题。我们的方法还与现有的DFKD方法相比,甚至在某些情况下达到了最新的方法。
translated by 谷歌翻译
跨域多式分类是一个具有挑战性的问题,要求快速域适应以处理在永无止境和快速变化的环境中的不同但相关的流。尽管现有的多式分类器在目标流中没有标记的样品,但它们仍然会产生昂贵的标签成本,因为它们需要完全标记的源流样品。本文旨在攻击跨域多发行分类问题中极端标签短缺问题的问题,在过程运行之前,仅提供了很少的标记源流样品。我们的解决方案,即从部分地面真理(Leopard)中学习的流流过程,建立在一个灵活的深度聚类网络上,在该网络中,其隐藏的节点,层和簇被添加并在不同的数据分布方面动态删除。同时的特征学习和聚类技术为群集友好的潜在空间提供了同时的特征学习和聚类技术的基础。域的适应策略依赖于对抗域的适应技术,在该技术中,训练特征提取器以欺骗域分类器对源和目标流进行分类。我们的数值研究证明了豹子的功效,在24例中,与突出算法相比,它可以提高性能的改善。豹子的源代码在\ url {https://github.com/wengweng001/leopard.git}中共享。
translated by 谷歌翻译
在本文中,我们描述了使用汉密尔顿蒙特卡洛方法从基于经验可能性的后验进行采样的{\ tt r}软件包。基于经验可能性的方法论已在最近的许多感兴趣问题的贝叶斯建模中使用。该半摩擦过程可以轻松地将非参数分布估计器的灵活性与参数模型的可解释性结合在一起。该模型是通过估计基于方程的约束来指定的。从贝叶斯的经验可能性(贝耶斯)后部提取推断是具有挑战性的。可能性是数值计算的,因此不存在后部的闭合表达。此外,对于任何有限尺寸的样本,可能性的支持是非凸,这阻碍了许多马尔可夫链蒙特卡洛(MCMC)程序的快速混合。最近已经表明,使用对数经验可能性梯度的性质,可以设计有效的汉密尔顿蒙特卡洛(HMC)算法来从贝内斯尔后部采样。该软件包要求用户仅指定估计方程,先验及其各自的梯度。从参数后部绘制的MCMC样本,并获得了用户所需的各种细节。
translated by 谷歌翻译
在本文中,我们介绍了一个高质量的大规模基准数据集,用于英语 - 越南语音翻译,其中有508音频小时,由331k的三胞胎组成(句子长度的音频,英语源笔录句,越南人目标subtitle句子)。我们还使用强基础进行了经验实验,发现传统的“级联”方法仍然优于现代“端到端”方法。据我们所知,这是第一个大规模的英语 - 越南语音翻译研究。我们希望我们的公开数据集和研究都可以作为未来研究和英语语音翻译应用的起点。我们的数据集可从https://github.com/vinairesearch/phost获得
translated by 谷歌翻译
知识蒸馏(KD)是一种有效的方法,可以将知识从大型“教师”网络转移到较小的“学生”网络。传统的KD方法需要大量标记的培训样本和白盒老师(可以访问参数)才能培训好学生。但是,这些资源并不总是在现实世界应用中获得。蒸馏过程通常发生在我们无法访问大量数据的外部政党方面,并且由于安全性和隐私问题,教师没有披露其参数。为了克服这些挑战,我们提出了一种黑盒子少的KD方法,以培训学生很少的未标记培训样本和一个黑盒老师。我们的主要思想是通过使用混合和有条件的变异自动编码器生成一组不同的分布合成图像来扩展训练集。这些合成图像及其从老师获得的标签用于培训学生。我们进行了广泛的实验,以表明我们的方法在图像分类任务上明显优于最近的SOTA/零射击KD方法。代码和型号可在以下网址找到:https://github.com/nphdang/fs-bbt
translated by 谷歌翻译
对基于深度学习的模型的对抗性攻击对当前的AI基础架构构成了重大威胁。其中,特洛伊木马袭击是最难防御的。在本文中,我们首先引入了Badnet类型的攻击变体,该攻击将特洛伊木马后门引入多个目标类,并允许将触发器放置在图像中的任何位置。前者使其更有效,后者使在物理空间中进行攻击变得非常容易。这种威胁模型的最先进的特洛伊木马检测方法失败了。为了防止这种攻击,我们首先引入了一种触发反向工程机制,该机制使用多个图像来恢复各种潜在的触发器。然后,我们通过测量此类恢复触发器的可传递性提出了检测机制。特洛伊木马触发器的可传递性将非常高,即它们使其他图像也进入同一类。我们研究攻击方法的许多实际优势,然后使用各种图像数据集证明检测性能。实验结果表明,我们方法的卓越检测性能超过了最新的。
translated by 谷歌翻译