我们调查了布尔功能多任务函数多任务的计算效率,这些函数在$ d $二维的超立方体上通过大小$ k \ ll d $在所有任务中共享的功能表示相关。我们提供了一个多项式时间多任务学习算法,用于带有保证金$ \ gamma $的概念类别的概念类别,该算法基于同时增强技术,仅需要$ \ textrm {poly}(k/\ gamma)和$ \ textrm {poly}(k \ log(d)/\ gamma)$样本总共。此外,我们证明了一个计算分离,表明假设存在一个无法在属性效率模型中学习的概念类,我们可以构建另一个可以在属性效率模型中学到的概念类,但不能是多任务。有效学习的 - 多任务学习此概念类要么需要超级顺序的时间复杂性,要么需要更大的样本总数。
translated by 谷歌翻译