我们调查了布尔功能多任务函数多任务的计算效率,这些函数在$ d $二维的超立方体上通过大小$ k \ ll d $在所有任务中共享的功能表示相关。我们提供了一个多项式时间多任务学习算法,用于带有保证金$ \ gamma $的概念类别的概念类别,该算法基于同时增强技术,仅需要$ \ textrm {poly}(k/\ gamma)和$ \ textrm {poly}(k \ log(d)/\ gamma)$样本总共。此外,我们证明了一个计算分离,表明假设存在一个无法在属性效率模型中学习的概念类,我们可以构建另一个可以在属性效率模型中学到的概念类,但不能是多任务。有效学习的 - 多任务学习此概念类要么需要超级顺序的时间复杂性,要么需要更大的样本总数。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
本文介绍了用于文档图像分析的图像数据集的系统文献综述,重点是历史文档,例如手写手稿和早期印刷品。寻找适当的数据集进行历史文档分析是促进使用不同机器学习算法进行研究的关键先决条件。但是,由于实际数据非常多(例如,脚本,任务,日期,支持系统和劣化量),数据和标签表示的不同格式以及不同的评估过程和基准,因此找到适当的数据集是一项艰巨的任务。这项工作填补了这一空白,并在现有数据集中介绍了元研究。经过系统的选择过程(根据PRISMA指南),我们选择了56项根据不同因素选择的研究,例如出版年份,文章中实施的方法数量,所选算法的可靠性,数据集大小和期刊的可靠性出口。我们通过将其分配给三个预定义的任务之一来总结每个研究:文档分类,布局结构或语义分析。我们为每个数据集提供统计,文档类型,语言,任务,输入视觉方面和地面真实信息。此外,我们还提供了这些论文或最近竞争的基准任务和结果。我们进一步讨论了该领域的差距和挑战。我们倡导将转换工具提供到通用格式(例如,用于计算机视觉任务的可可格式),并始终提供一组评估指标,而不仅仅是一种评估指标,以使整个研究的结果可比性。
translated by 谷歌翻译