适当的评估和实验设计对于经验科学是基础,尤其是在数据驱动领域。例如,由于语言的计算建模成功,研究成果对最终用户产生了越来越直接的影响。随着最终用户采用差距的减少,需求增加了,以确保研究社区和从业者开发的工具和模型可靠,可信赖,并且支持用户的目标。在该立场论文中,我们专注于评估视觉文本分析方法的问题。我们从可视化和自然语言处理社区中采用跨学科的角度,因为我们认为,视觉文本分析的设计和验证包括超越计算或视觉/交互方法的问题。我们确定了四个关键的挑战群,用于评估视觉文本分析方法(数据歧义,实验设计,用户信任和“大局”问题),并从跨学科的角度为研究机会提供建议。
translated by 谷歌翻译
机器学习(ML)生命周期涉及一系列迭代步骤,从有效的收集和准备数据,包括复杂的特征工程流程,对结果的演示和改进,各种步骤中的各种算法选择。特征工程尤其可以对ML非常有益,导致许多改进,例如提高预测结果,降低计算时间,减少过度噪音,并提高培训期间所采取的决策背后的透明度。尽管如此,虽然存在多个视觉分析工具来监控和控制ML生命周期的不同阶段(特别是与数据和算法相关的阶段),但功能工程支持仍然不足。在本文中,我们提出了FightEnvi,一种专门设计用于协助特征工程过程的视觉分析系统。我们建议的系统可帮助用户选择最重要的功能,将原始功能转换为强大的替代方案,并进行不同的特征生成组合。此外,数据空间切片允许用户探索本地和全局尺度上的功能的影响。 Feationenvi利用多种自动特征选择技术;此外,它目视指导用户有统计证据的关于每个特征的影响(或功能的子集)。最终结果是通过多种验证度量评估的重新设计的重新设计特征。用两种用例和案例研究证明了FeatureenVI的有用性和适用性。我们还向评估我们系统的有效性以及评估我们系统的有效性的观众报告反馈。
translated by 谷歌翻译
The monograph summarizes and analyzes the current state of development of computer and mathematical simulation and modeling, the automation of management processes, the use of information technologies in education, the design of information systems and software complexes, the development of computer telecommunication networks and technologies most areas that are united by the term Industry 4.0
translated by 谷歌翻译
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.
translated by 谷歌翻译
许多应用程序需要高准确性的神经网络以及低延迟和用户数据隐私保证。面对反欺骗就是这样的任务之一。但是,单个模型可能无法为不同的设备性能类别提供最佳结果,而培训多个模型耗时。在这项工作中,我们提出了训练后自适应(PTA)块。这样的块在结构上很简单,并为MobilenEtv2倒残余块提供了替换。 PTA块具有多个分支,具有不同的计算成本。可以按需和运行时选择要执行的分支;因此,为多个设备层提供不同的推理时间和配置能力。至关重要的是,该模型经过一次训练,并且可以在训练后,甚至直接在移动设备上进行重新配置。此外,与在Celeba-Spoof数据集中测试的原始MobileNetV2相比,提出的方法显示出相比要大得多的总体性能。在训练时对不同的PTA块配置进行采样,这也减少了训练模型所需的总体壁锁时间。虽然我们提出了针对反欺骗问题的计算结果,但具有PTA块的MobileNETV2适用于卷积神经网络可解决的任何问题,这使得结果实际上显着。
translated by 谷歌翻译
神经网络需要大量的注释数据才能学习。元学习算法提出了一种将训练样本数量减少到少数的方法。最突出的基于优化的元学习算法之一是模型敏捷的元学习(MAML)。但是,适应MAML新任务的关键过程非常慢。在这项工作中,我们提出了对MAML元学习算法的改进。我们介绍了lambda模式,通过这些模式,我们限制了在适应阶段在网络中更新的重量。这使得可以跳过某些梯度计算。选择最快的图案给定允许的质量降解阈值参数。在某些情况下,通过仔细的模式选择可以提高质量。进行的实验表明,通过Lambda适应模式选择,可以在以下区域显着改善MAML方法:适应时间已减少3倍,而精度损失最小;一步适应的准确性已大大提高。
translated by 谷歌翻译