Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with late fusion. In order to leverage the multi-magnification information and early fusion with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. To pass the information between different magnification embedding spaces, we define separate message-passing neural networks based on the node and edge type. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on both source and held-out datasets. Our method outperforms the state-of-the-art on both datasets and especially on the classification of grade groups 2 and 3, which are significant for clinical decisions for patient management. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
translated by 谷歌翻译
Solving portfolio management problems using deep reinforcement learning has been getting much attention in finance for a few years. We have proposed a new method using experts signals and historical price data to feed into our reinforcement learning framework. Although experts signals have been used in previous works in the field of finance, as far as we know, it is the first time this method, in tandem with deep RL, is used to solve the financial portfolio management problem. Our proposed framework consists of a convolutional network for aggregating signals, another convolutional network for historical price data, and a vanilla network. We used the Proximal Policy Optimization algorithm as the agent to process the reward and take action in the environment. The results suggested that, on average, our framework could gain 90 percent of the profit earned by the best expert.
translated by 谷歌翻译
The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives in the ensuing years. Many governments and health officials failed to arrest the rapid circulation of infection in their communities. The long incubation period and the large proportion of asymptomatic cases made COVID-19 particularly elusive to track. However, wastewater monitoring soon became a promising data source in addition to conventional indicators such as confirmed daily cases, hospitalizations, and deaths. Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting. This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and one Temporal Fusion Transformer (TFT) model to build a global forecasting model. We supplement the daily confirmed cases with viral loads and other socio-economic factors as covariates to the models. Our results suggest that TFT outperforms DeepTCN and learns a better association between viral load and daily cases. We demonstrated that equipping the models with the viral load improves their forecasting performance significantly. Moreover, viral load is shown to be the second most predictive input, following the containment and health index. Our results reveal the feasibility of training a location-agnostic deep-learning model to capture the dynamics of infection diffusion when wastewater viral load data is provided.
translated by 谷歌翻译
冠心病(CHD)是现代世界中死亡的主要原因。用于诊断和治疗CHD的现代分析工具的开发正在从科学界受到极大的关注。基于深度学习的算法,例如分割网络和检测器,通过及时分析患者的血管造影来协助医疗专业人员,在协助医疗专业人员方面发挥着重要作用。本文着重于X射线冠状动脉造影(XCA),该血管造影被认为是CHD诊断和治疗中的“黄金标准”。首先,我们描述了XCA图像的公开可用数据集。然后,审查了图像预处理的经典和现代技术。此外,讨论了共同的框架选择技术,这是输入质量以及模型性能的重要因素。在以下两章中,我们讨论了现代血管分割和狭窄检测网络,最后是当前最新技术的开放问题和当前局限性。
translated by 谷歌翻译
评估药物目标亲和力是药物发现和开发过程中的关键一步,但是在实验上获得此类数据既耗时又昂贵。因此,正在广泛开发用于预测结合强度的计算方法。但是,这些方法通常使用单任务方法进行预测,因此忽略了可以从数据中提取并用于驱动学习过程的其他信息。此后,在这项工作中,我们提出了一种多任务方法来结合强度预测。我们的结果表明,这些预测确实可以通过使用相关任务和多任务诱导的正则化的添加信息来从多任务学习方法中受益。
translated by 谷歌翻译
眼科图像和衍生物,例如视网膜神经纤维层(RNFL)厚度图对于检测和监测眼科疾病至关重要(例如,青光眼)。对于计算机辅助诊断眼疾病,关键技术是自动从眼科图像中提取有意义的特征,这些特征可以揭示与功能视觉丧失相关的生物标志物(例如RNFL变薄模式)。然而,将结构性视网膜损伤与人类视力丧失联系起来的眼科图像的表示,主要是由于患者之间的解剖学变化很大。在存在图像伪像的情况下,这项任务变得更加具有挑战性,由于图像采集和自动细分,这很常见。在本文中,我们提出了一个耐伪造的无监督的学习框架,该框架称为眼科图像的学习表示。 Eyelearn具有一个伪影校正模块,可以学习可以最好地预测无伪影眼镜图像的表示形式。此外,Eyelearn采用聚类引导的对比度学习策略,以明确捕获内部和间形的亲和力。在训练过程中,图像在簇中动态组织,以形成对比样品,其中鼓励在相同或不同的簇中分别学习相似或不同的表示形式。为了评估包冰者,我们使用青光眼患者的现实世界眼科摄影图数据集使用学习的表示形式进行视野预测和青光眼检测。广泛的实验和与最先进方法的比较验证了眼球从眼科图像中学习最佳特征表示的有效性。
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
社交媒体的可用性和互动性使它们成为全球各地的主要新闻来源。社交媒体的普及诱惑犯罪分子通过使用诱人文本和误导性图像制作和传播假新闻来追求不道德的意图。因此,验证社交媒体新闻和发现假期至关重要。这项工作旨在分析社交媒体中文本和图像的多模态特征,以检测假新闻。我们提出了一个假新闻透露者(FNR)方法,利用转换学习,提取上下文和语义特征和对比丢失,以确定图像和文本之间的相似性。我们在两个真正的社交媒体数据集上申请了FNR。结果表明,与以前的作品相比,该方法达到了检测假新闻的更高准确性。
translated by 谷歌翻译
视频可访问性对于盲人和低愿景用户来说至关重要,以获得教育,就业和娱乐的公平参与。尽管有专业和业余服务和工具,但大多数人类生成的描述都很昂贵且耗时。此外,人生成的描述的速率不能匹配视频产生的速度。为了克服视频可访问性的越来越多的空白,我们开发了两个工具的混合系统到1)自动生成视频的描述,2)提供响应于视频上的用户查询的答案或附加描述。与26例盲和低视力下的混合方法研究结果表明,当两种工具在串联中使用时,我们的系统会显着提高用户理解和享受所选视频的理解和享受。此外,参与者报告说,在呈现自生物的描述与人类修订的自动化描述相关时,没有显着差异。我们的结果表明了对发达系统的热情及其承诺提供对视频的定制访问。我们讨论了当前工作的局限性,并为自动视频描述工具的未来发展提供了建议。
translated by 谷歌翻译