点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译
组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.
translated by 谷歌翻译
病理诊所中癌症的诊断,预后和治疗性决策现在可以基于对多吉吉像素组织图像的分析,也称为全斜图像(WSIS)。最近,已经提出了深层卷积神经网络(CNN)来得出无监督的WSI表示。这些很有吸引力,因为它们不太依赖于繁琐的专家注释。但是,一个主要的权衡是,较高的预测能力通常以解释性为代价,这对他们的临床使用构成了挑战,通常通常期望决策中的透明度。为了应对这一挑战,我们提出了一个基于Deep CNN的手工制作的框架,用于构建整体WSI级表示。基于有关变压器在自然语言处理领域的内部工作的最新发现,我们将其过程分解为一个更透明的框架,我们称其为手工制作的组织学变压器或H2T。基于我们涉及各种数据集的实验,包括总共5,306个WSI,结果表明,与最近的最新方法相比,基于H2T的整体WSI级表示具有竞争性能,并且可以轻松用于各种下游分析任务。最后,我们的结果表明,H2T框架的最大14倍,比变压器模型快14倍。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
在本文中,我们介绍了一种新的基于GNN的知识图形嵌入模型,命名为WGE,以捕获聚焦的图形结构和关联的图形结构。特别是,鉴于知识图形,WGE构建一个无向实体的聚焦图,该图形将实体视为节点。此外,WGE还从关联的约束构造另一个无向图形,将实体和关系视为节点。然后,WGE提出了一种新的架构,即直接在这两个单个图表上使用两个vanilla GNNS,以更好地更新实体和关系的矢量表示,然后是加权得分函数来返回三重分数。实验结果表明,WGE在三个新的和具有挑战性的基准数据集Codex上获得最先进的表演,用于知识图形完成。
translated by 谷歌翻译
不同于单图像超分辨率(SISR)任务,视频超分辨率(VSR)任务的键是在帧中充分利用互补信息来重建高分辨率序列。由于来自不同帧的图像具有不同的运动和场景,因此精确地对准多个帧并有效地融合不同的帧,这始终是VSR任务的关键研究工作。为了利用邻近框架的丰富互补信息,在本文中,我们提出了一种多级VSR深度架构,称为PP-MSVSR,局部融合模块,辅助损耗和重新对准模块,以逐步改进增强率。具体地,为了加强特征传播中帧的特征的融合,在阶段-1中设计了局部融合模块,以在特征传播之前执行局部特征融合。此外,我们在阶段-2中引入辅助损耗,使得通过传播模块获得的特征储备更多相关的信息连接到HR空间,并在阶段-3中引入重新对准模块以充分利用该特征信息前一阶段。广泛的实验证实,PP-MSVSR实现了VID4数据集的有希望的性能,其实现了28.13dB的PSNR,仅具有1.45米的参数。并且PP-MSVSR-L具有相当大的参数的REDS4数据集上的所有状态。代码和模型将在Paddlegan \脚注{https://github.com/paddlepaddle/paddlegan。}。
translated by 谷歌翻译
核毒素和eosin染色组织学图像中的核分段,分类和定量使得能够提取可解释的细胞基特征,该特征可用于计算病理(CPATH)中的下游可解释模型。然而,对不同核的自动识别面临着主要的挑战,因为有几种不同类型的核,其中一些呈现出大的内部变异性。为了帮助推动CPATH中自动核认可的前进研究和创新,我们组织了结肠核识别和计数(圆锥)挑战。挑战鼓励研究人员开发在CPATH中,在CPATH中,在CPATH中进行当前最大已知的公知的核级数据集进行分割,分类和计数,其中包含大约一半的标记的核。因此,锥形挑战利用核数量超过10倍的核,作为核识别的前一大挑战数据集。如果我们希望在临床环境中部署它们,则对输入变体具有强大的算法很重要。因此,作为这一挑战的一部分,我们还将测试每个提交算法对某些输入变化的敏感性。
translated by 谷歌翻译
近年来,视觉伪造达到了人类无法识别欺诈的复杂程度,这对信息安全构成了重大威胁。出现了广泛的恶意申请,例如名人的假新闻,诽谤或勒索,政治战中的政治家冒充,以及谣言的传播吸引观点。结果,已经提出了一种富有的视觉验证技术,以试图阻止这种危险的趋势。在本文中,我们使用全面的和经验方法,提供了一种基准,可以对视觉伪造和视觉取证进行深入的洞察。更具体地,我们开发一个独立的框架,整合最先进的假冒生成器和探测器,并使用各种标准来测量这些技术的性能。我们还对基准测试结果进行了详尽的分析,确定了在措施与对策之间永无止境的战争中的比较参考的方法的特征。
translated by 谷歌翻译
更好的准确性和效率权衡在对象检测中是一个具有挑战性的问题。在这项工作中,我们致力于研究对象检测的关键优化和神经网络架构选择,以提高准确性和效率。我们调查了无锚策略对轻质对象检测模型的适用性。我们增强了骨干结构并设计了颈部的轻质结构,从而提高了网络的特征提取能力。我们改善标签分配策略和损失功能,使培训更稳定和高效。通过这些优化,我们创建了一个名为PP-Picodet的新的实时对象探测器系列,这在移动设备的对象检测上实现了卓越的性能。与其他流行型号相比,我们的模型在准确性和延迟之间实现了更好的权衡。 Picodet-s只有0.99m的参数达到30.6%的地图,它是地图的绝对4.8%,同时与yolox-nano相比将移动CPU推理延迟减少55%,并且与Nanodet相比,MAP的绝对改善了7.1%。当输入大小为320时,它在移动臂CPU上达到123个FPS(使用桨Lite)。Picodet-L只有3.3M参数,达到40.9%的地图,这是地图的绝对3.7%,比yolov5s更快44% 。如图1所示,我们的模型远远优于轻量级对象检测的最先进的结果。代码和预先训练的型号可在https://github.com/paddlepaddle/paddledentions提供。
translated by 谷歌翻译