在数学金融文献中,有一个丰富的数学模型目录,用于研究算法交易问题(例如营销和最佳执行)。本文介绍了\ MBTGYM,这是一个Python模块,该模块提供了一套健身环境,用于培训强化学习(RL)代理,以解决此类基于模型的交易问题。该模块以一种可扩展的方式设置,以允许不同模型不同方面的组合。它支持对矢量化环境的高效实现,以更快地训练RL代理。在本文中,我们激发了使用RL解决此类基于模型的限制订单书籍中的挑战,我们解释了我们的健身房环境的设计,然后展示其在解决文献中解决标准和非标准问题中的用途。最后,我们为进一步开发模块的路线图制定了路线图,我们将其作为GitHub上的开源存储库提供,以便它可以作为基于模型算法交易的RL研究的焦点。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (c-MARL) is widely applied in safety-critical scenarios, thus the analysis of robustness for c-MARL models is profoundly important. However, robustness certification for c-MARLs has not yet been explored in the community. In this paper, we propose a novel certification method, which is the first work to leverage a scalable approach for c-MARLs to determine actions with guaranteed certified bounds. c-MARL certification poses two key challenges compared with single-agent systems: (i) the accumulated uncertainty as the number of agents increases; (ii) the potential lack of impact when changing the action of a single agent into a global team reward. These challenges prevent us from directly using existing algorithms. Hence, we employ the false discovery rate (FDR) controlling procedure considering the importance of each agent to certify per-state robustness and propose a tree-search-based algorithm to find a lower bound of the global reward under the minimal certified perturbation. As our method is general, it can also be applied in single-agent environments. We empirically show that our certification bounds are much tighter than state-of-the-art RL certification solutions. We also run experiments on two popular c-MARL algorithms: QMIX and VDN, in two different environments, with two and four agents. The experimental results show that our method produces meaningful guaranteed robustness for all models and environments. Our tool CertifyCMARL is available at https://github.com/TrustAI/CertifyCMA
translated by 谷歌翻译
Research on remote sensing image classification significantly impacts essential human routine tasks such as urban planning and agriculture. Nowadays, the rapid advance in technology and the availability of many high-quality remote sensing images create a demand for reliable automation methods. The current paper proposes two novel deep learning-based architectures for image classification purposes, i.e., the Discriminant Deep Image Prior Network and the Discriminant Deep Image Prior Network+, which combine Deep Image Prior and Triplet Networks learning strategies. Experiments conducted over three well-known public remote sensing image datasets achieved state-of-the-art results, evidencing the effectiveness of using deep image priors for remote sensing image classification.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译
Identifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results.
translated by 谷歌翻译
In the last decade, exponential data growth supplied machine learning-based algorithms' capacity and enabled their usage in daily-life activities. Additionally, such an improvement is partially explained due to the advent of deep learning techniques, i.e., stacks of simple architectures that end up in more complex models. Although both factors produce outstanding results, they also pose drawbacks regarding the learning process as training complex models over large datasets are expensive and time-consuming. Such a problem is even more evident when dealing with video analysis. Some works have considered transfer learning or domain adaptation, i.e., approaches that map the knowledge from one domain to another, to ease the training burden, yet most of them operate over individual or small blocks of frames. This paper proposes a novel approach to map the knowledge from action recognition to event recognition using an energy-based model, denoted as Spectral Deep Belief Network. Such a model can process all frames simultaneously, carrying spatial and temporal information through the learning process. The experimental results conducted over two public video dataset, the HMDB-51 and the UCF-101, depict the effectiveness of the proposed model and its reduced computational burden when compared to traditional energy-based models, such as Restricted Boltzmann Machines and Deep Belief Networks.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
复杂的伤口通常会面临部分或完全损失皮肤厚度,从而通过次要意图愈合。它们可以是急性或慢性的,可以发现感染,缺血和组织坏死以及与全身性疾病的关联。全球研究机构报告了无数案件,最终涉及严重的公共卫生问题,因为它们涉及人力资源(例如医师和医疗保健专业人员),并对生活质量产生负面影响。本文提出了一个新的数据库,用于自动将复杂伤口自动分类为五个类别,即非缠绕区域,肉芽,纤维蛋白样组织和干性坏死,血肿。这些图像包括由压力,血管溃疡,糖尿病,燃烧和手术干预后的并发症引起的复杂伤口的不同情况。该数据集(称为ComplexWoundDB)是独一无二的,因为它可以从野外获得的27美元图像中的像素级分类,即在患者的房屋中收集图像,并由四名卫生专业人员标记。用不同的机器学习技术进行的进一步实验证明了解决计算机辅助复杂伤口组织分类问题的挑战。手稿阐明了该地区未来的方向,在文献中广泛使用的其他数据库中进行了详细比较。
translated by 谷歌翻译
需要在机器学习模型中对最小参数设置的需求,以避免耗时的优化过程。$ k $ - 最终的邻居是在许多问题中使用的最有效,最直接的模型之一。尽管具有众所周知的性能,但它仍需要特定数据分布的$ K $值,从而需要昂贵的计算工作。本文提出了一个$ k $ - 最终的邻居分类器,该分类器绕过定义$ k $的值的需求。考虑到训练集的数据分布,该模型计算$ k $值。我们将提出的模型与标准$ K $ - 最近的邻居分类器和文献中的两个无参数版本进行了比较。11个公共数据集的实验证实了所提出方法的鲁棒性,因为所获得的结果相似甚至更好。
translated by 谷歌翻译
在多语言甚至单语言中鉴定的模型的零拍跨语言能力刺激了许多假设,以解释这一有趣的经验结果。但是,由于预处理的成本,大多数研究都使用公共模型的公共模型,其预处理方法(例如代币化,语料库规模和计算预算的选择)可能会大不相同。当研究人员对自己的模型预识时,他们通常会在预算有限的情况下这样做,并且与SOTA模型相比,最终的模型的表现可能明显不足。这些实验差异导致有关这些模型跨语性能力的性质的各种不一致的结论。为了帮助对该主题进行进一步研究,我们发布了10个单语字节级模型,并在相同的配置下进行了严格审慎的概述,并具有大型计算预算(相当于V100的420天)和Corpora,比原始BERT大4倍。由于它们不含令牌,因此消除了看不见的令牌嵌入的问题,从而使研究人员可以在具有不同脚本的语言中尝试更广泛的跨语言实验。此外,我们释放了在不自然语言文本上预测的两个模型,这些模型可用于理智检查实验。关于质量检查和NLI任务的实验表明,我们的单语模型实现了多语言的竞争性能,因此可以加强我们对语言模型中跨语性可传递性的理解。
translated by 谷歌翻译