可视化非常大的矩阵涉及许多强大的问题。这些问题的各种流行的解决方案涉及采样,群集,投影或特征选择,以降低原始任务的大小和复杂性。这些方法的一个重要方面是如何在减少行和列以便在较低尺寸空间中保持高维空间中的点之间的相对距离。这方面很重要,因为基于错误的视觉推理的结论可能是有害的。在可视化的基础上判断与相似或类似的点相似或类似的点可以导致错误的结论。为了改善这种偏差并使非常大的数据集的可视化可行,我们介绍了两个新的算法,分别选择矩形矩阵的行和列的子集。这种选择旨在尽可能地保持相对距离。我们将矩阵素描与各种人工和真实数据集的更传统的替代品进行比较。
translated by 谷歌翻译
在过去的几十年中,出现了一种趋势,指出在可移动,可编程和可转换机制中利用结构不稳定性。受钢制发夹的启发,我们将面板组件与可靠的结构相结合,并使用半刚性塑料板建造合规的拍打机构,并将其安装在束缚的气动软机器人鱼和无螺旋螺旋式的电动机驱动器上,以展示它的前所未有的优势。设计规则是根据理论和验证提出的。观察到与参考相比,气动鱼的游泳速度提高了两倍,对Untether Fish的进一步研究表明,对于不固定的兼容的游泳运动员,可损坏的速度为2.03 BL/S(43.6 cm/s),优于先前报告的最快的,其幅度为194%。这项工作可能预示着下一代符合下一代机器人技术的结构革命。
translated by 谷歌翻译
时空系统中有效,准确的事件预测对于最大程度地减少服务停机时间和优化性能至关重要。这项工作旨在利用历史数据来使用时空预测来预测和诊断事件。我们考虑道路交通系统的特定用例,事件采取异常事件的形式,例如事故或破碎的车辆。为了解决这个问题,我们开发了一种称为RADNET的神经模型,该模型预测系统参数,例如未来时间段的平均车辆速度。由于这种系统在很大程度上遵循每日或每周的周期性,因此我们将Radnet的预测与历史平均值进行比较与标记事件进行比较。与先前的工作不同,radnet在两个排列中渗透了空间和时间趋势,最后在预测之前结合了密集表示。这促进了知情推理和更准确的事件检测。具有两个公开可用和一个新的道路交通数据集的实验表明,与最先进的方法相比,所提出的模型的预测F1得分高达8%。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译
对于移动机器人,移动机械手和自治车辆,以安全地在街道和仓库等人口众多的地方驾驶,人类观察者必须能够理解他们的导航意图。启用这种理解的一种方法是通过在周围环境上的投影来可视化这一意图。但尽管存在此类预测的有效性,但不存在具有集成硬件设置的开放式代码库。在这项工作中,我们详细介绍了这种定向预测的有效性的经验证据,并使用广泛使用的机器人操作系统(ROS)和RVIZ在C ++中分享了这种预测的机器人无关的实施。此外,我们使用获取机器人演示用于部署此软件的硬件配置,并简要概括激励此配置的全尺寸用户学习。代码,配置文件(Roslaunch和RVIZ文件)以及文档在Github上自由地提供HTTPS://github.com/umhan35/Arrow_Projection。
translated by 谷歌翻译
我们介绍了一种可扩展的方法来实现高斯工艺推断,它将时空滤波与自然梯度变化推断相结合,导致用于多变量数据的非共轭GP方法,其相对于时间线性缩放。我们的自然梯度方法可以应用并行滤波和平滑,进一步降低时间跨度复杂性在时间步长的对数。我们得出了稀疏近似,该稀疏近似值在减少的空间诱导点上构造一个状态空间模型,并且显示用于可分离的马尔可夫内核,完整和稀疏的情况完全恢复标准变分GP,同时表现出有利的计算特性。为了进一步改善空间缩放,我们提出了一种平均场景假设空间位置之间的独立性,当与稀疏性和平行化连接时,这导致了大规模的时空问题的有效和准确的方法。
translated by 谷歌翻译
我们制定自然梯度变推理(VI),期望传播(EP),和后线性化(PL)作为牛顿法用于优化贝叶斯后验分布的参数扩展。这种观点明确地把数值优化框架下的推理算法。我们表明,通用近似牛顿法从优化文献,即高斯 - 牛顿和准牛顿方法(例如,该BFGS算法),仍然是这种“贝叶斯牛顿”框架下有效。这导致了一套这些都保证以产生半正定协方差矩阵,不像标准VI和EP新颖算法。我们统一的观点提供了新的见解各种推理方案之间的连接。所有提出的方法适用于具有高斯事先和非共轭的可能性,这是我们与(疏)高斯过程和状态空间模型展示任何模型。
translated by 谷歌翻译