问答(QA)系统越来越多地部署在支持现实世界决策的应用程序中。但是,最新的模型依赖于深层神经网络,这些网络很难被人类解释。固有的可解释模型或事后解释性方法可以帮助用户理解模型如何达到其预测,并在成功的情况下增加对系统的信任。此外,研究人员可以利用这些见解来开发更准确和偏见的新方法。在本文中,我们介绍了Square V2(Square的新版本),以根据图形和基于图形的说明等方法进行比较模型提供解释性基础架构。尽管显着图对于检查每个输入令牌对模型预测的重要性很有用,但来自外部知识图的基于图的解释使用户能够验证模型预测背后的推理。此外,我们提供了多种对抗性攻击,以比较质量检查模型的鲁棒性。通过这些解释性方法和对抗性攻击,我们旨在简化对可信赖的质量检查模型的研究。 Square可在https://square.ukp-lab.de上找到。
translated by 谷歌翻译
通常通过过去的选择来告知机器学习中的评估,例如要使用哪些数据集或指标。该标准化可以使用排行榜对平等基础进行比较,但是随着出现更好的替代方案,评估选择变得不佳。这个问题在自然语言生成中尤其相关,该语言需要不断改善的数据集,指标和人类评估以提出确定性的主张。为了使遵循最佳模型评估实践更加容易,我们介绍了GEMV2。新版本的一代,评估和指标基准为数据集,模型和指标开发人员提供了模块化基础架构,以使彼此受益。GEMV2支持40种记录的数据集中51种语言。所有数据集的模型都可以在线评估,我们的交互式数据卡创建和渲染工具使得在Living Benchmark中添加新数据集变得更加容易。
translated by 谷歌翻译
尽管最近的抽象摘要有所改善,但大多数当前方法都会产生与源文档不一致的摘要,从而严重限制了其在现实世界应用中的信任和使用。最近的作品显示了使用文本或依赖性弧形识别事实错误识别的有希望的改进;但是,他们不会同时考虑整个语义图。为此,我们提出了Factgraph,该方法将文档分解为结构化含义表示(MR),更适合于事实评估。太太描述了核心语义概念及其关系,以规范形式汇总文档和摘要中的主要内容,并减少数据稀疏性。 Factgraph使用与结构感知适配器增强的图形编码器编码此类图,以根据图形连接性捕获概念之间的交互,以及使用基于适配器的文本编码器的文本表示。在不同基准上进行评估事实的实验表明,事实图的表现优于先前的方法高达15%。此外,Factgraph改善了识别内容可验证性错误的性能,并更好地捕获了附近级别的事实不一致。
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
最近的研究表明,犯罪网络具有复杂的组织结构,但是是否可以用来预测犯罪网络的静态和动态特性。在这里,通过结合图表学习和机器学习方法,我们表明,可以使用政治腐败,警察情报和洗钱网络的结构性特性来恢复缺失的犯罪伙伴关系,区分不同类型的犯罪和法律协会以及预测犯罪分子之间交换的总金额,所有这些都具有出色的准确性。我们还表明,我们的方法可以预期在腐败网络的动态增长过程中,其准确性很高。因此,与在犯罪现场发现的证据类似,我们得出结论,犯罪网络的结构模式具有有关非法活动的重要信息,这使机器学习方法可以预测缺失的信息,甚至预测未来的犯罪行为。
translated by 谷歌翻译
在这项工作中,我们提出了一种基于从Marmoset猴的大脑收集的局部场潜在数据,提出了与帕金森病相关的新生物物理计算模型。帕金森病是一种神经退行性疾病,与大量NIGRA PARSCACTCA的多巴胺能神经元的死亡有关,这影响了大脑基底神经节 - 丘脑 - 皮质神经元电路的正常动态。尽管存在多种疾病的机制,但仍然缺少这些机制和分子发病机制的完整描述,仍然没有治愈。为了解决这种差距,已经提出了类似于动物模型中发现的神经生物学方面的计算模型。在我们的模型中,我们执行了一种数据驱动方法,其中使用差分演变优化了一组生物学限制参数。进化模型成功地类似于来自健康和Parkinsonian Marmoset脑数据的单神经元均值射击和局部场势的光谱签名。据我们所知,这是帕金森病的第一个基于来自Marmoset Monkeys的七个脑区域的同时电生理学记录的第一个计算模型。结果表明,该拟议的模型可以促进PD机制的调查,并支持可以表明新疗法的技术的发展。它还可以应用于其他计算神经科学问题,其中可以使用生物数据来适应大规模模型的脑电路。
translated by 谷歌翻译
Osteoarthritis (OA) is the most prevalent chronic joint disease worldwide, where knee OA takes more than 80% of commonly affected joints. Knee OA is not a curable disease yet, and it affects large columns of patients, making it costly to patients and healthcare systems. Etiology, diagnosis, and treatment of knee OA might be argued by variability in its clinical and physical manifestations. Although knee OA carries a list of well-known terminology aiming to standardize the nomenclature of the diagnosis, prognosis, treatment, and clinical outcomes of the chronic joint disease, in practice there is a wide range of terminology associated with knee OA across different data sources, including but not limited to biomedical literature, clinical notes, healthcare literacy, and health-related social media. Among these data sources, the scientific articles published in the biomedical literature usually make a principled pipeline to study disease. Rapid yet, accurate text mining on large-scale scientific literature may discover novel knowledge and terminology to better understand knee OA and to improve the quality of knee OA diagnosis, prevention, and treatment. The present works aim to utilize artificial neural network strategies to automatically extract vocabularies associated with knee OA diseases. Our finding indicates the feasibility of developing word embedding neural networks for autonomous keyword extraction and abstraction of knee OA.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
The intersection of ground reaction forces in a small, point-like area above the center of mass has been observed in computer simulation models and human walking experiments. This intersection point is often called a virtual pivot point (VPP). With the VPP observed so ubiquitously, it is commonly assumed to provide postural stability for bipedal walking. In this study, we challenge this assumption by questioning if walking without a VPP is possible. Deriving gaits with a neuromuscular reflex model through multi-stage optimization, we found stable walking patterns that show no signs of the VPP-typical intersection of ground reaction forces. We, therefore, conclude that a VPP is not necessary for upright, stable walking. The non-VPP gaits found are stable and successfully rejected step-down perturbations, which indicates that a VPP is not primarily responsible for locomotion robustness or postural stability. However, a collision-based analysis indicates that non-VPP gaits increased the potential for collisions between the vectors of the center of mass velocity and ground reaction forces during walking, suggesting an increased mechanical cost of transport. Although our computer simulation results have yet to be confirmed through experimental studies, they already strongly challenge the existing explanation of the VPP's function and provide an alternative explanation.
translated by 谷歌翻译
With the rise in high resolution remote sensing technologies there has been an explosion in the amount of data available for forest monitoring, and an accompanying growth in artificial intelligence applications to automatically derive forest properties of interest from these datasets. Many studies use their own data at small spatio-temporal scales, and demonstrate an application of an existing or adapted data science method for a particular task. This approach often involves intensive and time-consuming data collection and processing, but generates results restricted to specific ecosystems and sensor types. There is a lack of widespread acknowledgement of how the types and structures of data used affects performance and accuracy of analysis algorithms. To accelerate progress in the field more efficiently, benchmarking datasets upon which methods can be tested and compared are sorely needed. Here, we discuss how lack of standardisation impacts confidence in estimation of key forest properties, and how considerations of data collection need to be accounted for in assessing method performance. We present pragmatic requirements and considerations for the creation of rigorous, useful benchmarking datasets for forest monitoring applications, and discuss how tools from modern data science can improve use of existing data. We list a set of example large-scale datasets that could contribute to benchmarking, and present a vision for how community-driven, representative benchmarking initiatives could benefit the field.
translated by 谷歌翻译