社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了基于推文主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前的通用和领域特定语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
translated by 谷歌翻译
语言随着时间的流逝而演变,单词含义会发生相应的变化。在社交媒体中尤其如此,因为它的动态性质会导致语义转移的速度更快,这使得NLP模型在处理新内容和趋势方面具有挑战性。但是,专门解决这些社交平台动态性质的数据集和模型的数量很少。为了弥合这一差距,我们提出了Tempowic,这是一种新的基准,尤其是旨在加快基于社交媒体的含义转变的研究。我们的结果表明,即使对于最近发行的专门从事社交媒体的语言模型,Tempowic是一个具有挑战性的基准。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
The field of Automatic Music Generation has seen significant progress thanks to the advent of Deep Learning. However, most of these results have been produced by unconditional models, which lack the ability to interact with their users, not allowing them to guide the generative process in meaningful and practical ways. Moreover, synthesizing music that remains coherent across longer timescales while still capturing the local aspects that make it sound ``realistic'' or ``human-like'' is still challenging. This is due to the large computational requirements needed to work with long sequences of data, and also to limitations imposed by the training schemes that are often employed. In this paper, we propose a generative model of symbolic music conditioned by data retrieved from human sentiment. The model is a Transformer-GAN trained with labels that correspond to different configurations of the valence and arousal dimensions that quantitatively represent human affective states. We try to tackle both of the problems above by employing an efficient linear version of Attention and using a Discriminator both as a tool to improve the overall quality of the generated music and its ability to follow the conditioning signals.
translated by 谷歌翻译
Simulating quantum channels is a fundamental primitive in quantum computing, since quantum channels define general (trace-preserving) quantum operations. An arbitrary quantum channel cannot be exactly simulated using a finite-dimensional programmable quantum processor, making it important to develop optimal approximate simulation techniques. In this paper, we study the challenging setting in which the channel to be simulated varies adversarially with time. We propose the use of matrix exponentiated gradient descent (MEGD), an online convex optimization method, and analytically show that it achieves a sublinear regret in time. Through experiments, we validate the main results for time-varying dephasing channels using a programmable generalized teleportation processor.
translated by 谷歌翻译
Electricity prices in liberalized markets are determined by the supply and demand for electric power, which are in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load, i.e. the difference of load and renewable generation. Many market models implement this principle to predict electricity prices but typically require certain assumptions and simplifications. In this article, we present an explainable machine learning model for the prices on the German day-ahead market, which substantially outperforms a benchmark model based on the merit order principle. Our model is designed for the ex-post analysis of prices and thus builds on various external features. Using Shapley Additive exPlanation (SHAP) values, we can disentangle the role of the different features and quantify their importance from empiric data. Load, wind and solar generation are most important, as expected, but wind power appears to affect prices stronger than solar power does. Fuel prices also rank highly and show nontrivial dependencies, including strong interactions with other features revealed by a SHAP interaction analysis. Large generation ramps are correlated with high prices, again with strong feature interactions, due to the limited flexibility of nuclear and lignite plants. Our results further contribute to model development by providing quantitative insights directly from data.
translated by 谷歌翻译
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
translated by 谷歌翻译
We examined multiple deep neural network (DNN) architectures for suitability in predicting neurotransmitter concentrations from labeled in vitro fast scan cyclic voltammetry (FSCV) data collected on carbon fiber electrodes. Suitability is determined by the predictive performance in the "out-of-probe" case, the response to artificially induced electrical noise, and the ability to predict when the model will be errant for a given probe. This work extends prior comparisons of time series classification models by focusing on this specific task. It extends previous applications of machine learning to FSCV task by using a much larger data set and by incorporating recent advancements in deep neural networks. The InceptionTime architecture, a deep convolutional neural network, has the best absolute predictive performance of the models tested but was more susceptible to noise. A naive multilayer perceptron architecture had the second lowest prediction error and was less affected by the artificial noise, suggesting that convolutions may not be as important for this task as one might suspect.
translated by 谷歌翻译
Dimensionality reduction has become an important research topic as demand for interpreting high-dimensional datasets has been increasing rapidly in recent years. There have been many dimensionality reduction methods with good performance in preserving the overall relationship among data points when mapping them to a lower-dimensional space. However, these existing methods fail to incorporate the difference in importance among features. To address this problem, we propose a novel meta-method, DimenFix, which can be operated upon any base dimensionality reduction method that involves a gradient-descent-like process. By allowing users to define the importance of different features, which is considered in dimensionality reduction, DimenFix creates new possibilities to visualize and understand a given dataset. Meanwhile, DimenFix does not increase the time cost or reduce the quality of dimensionality reduction with respect to the base dimensionality reduction used.
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译