基于文本的人搜索是一项具有挑战性的任务,旨在搜索具有查询文本描述的图像库中具有相同身份的行人图像。近年来,基于文本的人搜索取得了良好的进步,而最先进的方法通过学习图像和文本之间的本地细粒度对应来实现出色的性能。但是,现有方法通过手工制作的拆分或外部工具从图像和文本中明确提取图像零件和文本短语,然后进行复杂的跨模式本地匹配。此外,现有方法很少考虑由图像特定信息引起的方式之间的信息不平等问题。在本文中,我们提出了一个有效的联合信息和语义对齐网络(ISANET),用于基于文本的人搜索。具体而言,我们首先设计一个特定图像的信息抑制模块,该模块分别通过关系引导定位和通道注意过滤抑制图像背景和环境因素。该设计可以有效地减轻信息不平等问题,并实现图像和文本之间的信息对齐。其次,我们建议一个隐性的本地对齐模块,以将图像和文本功能适应一组模态共享的语义主题中心,并隐式地学习图像和文本之间的本地细粒度对应关系,而无需其他监督信息和复杂的跨模式互动。此外,引入了全球一致性作为当地观点的补充。在多个数据库上进行的广泛实验证明了所提出的ISANET的有效性和优势。
translated by 谷歌翻译
由于它们在现实世界中的广泛采用,提高深神经网络(DNN)的运行时性能至关重要。现有的优化DNN的张量代数表达的方法仅考虑由固定的预定义运算符表示的表达式,在一般表达式之间缺少可能的优化机会。我们提出了Ollie,这是第一个基于衍生的张量程序优化器。 Ollie通过利用一般张量代数表达式之间的转换来优化张量程序,从而实现了一个更大的表达搜索空间,其中包括由先前工作作为特殊情况支持的搜索空间。 Ollie使用基于混合衍生的优化器,该优化器有效地结合了探索性和指导性推导,以快速发现高度优化的表达式。对七个DNN的评估表明,Ollie可以在A100 GPU上胜过2.73 $ \ times $(平均为1.46美元$ \ times $),在V100上最多可超过2.68 $ \ times $(1.51 $ \ times $) GPU分别。
translated by 谷歌翻译
放射学报告生成旨在产生计算机辅助诊断,以缓解放射科医生的工作量,并最近引起了越来越长的关注。然而,之前的深度学习方法倾向于忽视医学发现之间的相互影响,这可以是限制所生成的报告质量的瓶颈。在这项工作中,我们建议在信息知识图表中提出和代表医学发现的协会,并将此事先知识纳入放射学报告,以帮助提高所生成的报告质量。实验结果证明了我们在IU X射线数据集上的提出方法的优越性,Rouge-L为0.384 $ \ PM $ 0.007和0.340 $ \ PM $ 0.011。与以前的作品相比,我们的模型平均实现了1.6%(苹果酒和Rouge-L的增加2.0%和1.5%)。实验表明,先验知识可以为准确的放射学报告生成表现收益。我们将在https://github.com/bionlplab/report_generation_amia2022中公开公开可用的代码。
translated by 谷歌翻译
放射学报告是非结构化的,并包含由放射科医生转录的成像发现和相应的诊断,包括临床事实和否定和/或不确定的陈述。从放射学报告中提取病理发现和诊断对于质量控制,人口健康和监测疾病进展至关重要。现有的作品,主要依赖于基于规则的系统或基于变压器的预训练模型微调,但不能考虑事实和不确定的信息,因此产生假阳性输出。在这项工作中,我们介绍了三种宗旨的增强技术,在产生了对比学习的增强时保留了事实和关键信息。我们介绍了Radbert-Cl,通过自我监督的对比损失将这些信息融入蓝莓。我们对MIMIC-CXR的实验显示了RADBERT-CL在多级多标签报告分类的微调上的卓越性能。我们说明,当有很少有标记的数据时,Radbert-Cl以常规的SOTA变压器(BERT / Bluebert)优于更大的边缘(6-11%)。我们还表明,Radbert-CL学习的表示可以在潜伏空间中捕获关键的医疗信息。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Neural models with an encoder-decoder framework provide a feasible solution to Question Generation (QG). However, after analyzing the model vocabulary we find that current models (both RNN-based and pre-training based) have more than 23\% inflected forms. As a result, the encoder will generate separate embeddings for the inflected forms, leading to a waste of training data and parameters. Even worse, in decoding these models are vulnerable to irrelevant noise and they suffer from high computational costs. In this paper, we propose an approach to enhance the performance of QG by fusing word transformation. Firstly, we identify the inflected forms of words from the input of encoder, and replace them with the root words, letting the encoder pay more attention to the repetitive root words. Secondly, we propose to adapt QG as a combination of the following actions in the encode-decoder framework: generating a question word, copying a word from the source sequence or generating a word transformation type. Such extension can greatly decrease the size of predicted words in the decoder as well as noise. We apply our approach to a typical RNN-based model and \textsc{UniLM} to get the improved versions. We conduct extensive experiments on SQuAD and MS MARCO datasets. The experimental results show that the improved versions can significantly outperform the corresponding baselines in terms of BLEU, ROUGE-L and METEOR as well as time cost.
translated by 谷歌翻译
In this paper, we develop an efficient multi-scale network to predict action classes in partial videos in an end-to-end manner. Unlike most existing methods with offline feature generation, our method directly takes frames as input and further models motion evolution on two different temporal scales.Therefore, we solve the complexity problems of the two stages of modeling and the problem of insufficient temporal and spatial information of a single scale. Our proposed End-to-End MultiScale Network (E2EMSNet) is composed of two scales which are named segment scale and observed global scale. The segment scale leverages temporal difference over consecutive frames for finer motion patterns by supplying 2D convolutions. For observed global scale, a Long Short-Term Memory (LSTM) is incorporated to capture motion features of observed frames. Our model provides a simple and efficient modeling framework with a small computational cost. Our E2EMSNet is evaluated on three challenging datasets: BIT, HMDB51, and UCF101. The extensive experiments demonstrate the effectiveness of our method for action prediction in videos.
translated by 谷歌翻译