近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
There are two important things in science: (A) Finding answers to given questions, and (B) Coming up with good questions. Our artificial scientists not only learn to answer given questions, but also continually invent new questions, by proposing hypotheses to be verified or falsified through potentially complex and time-consuming experiments, including thought experiments akin to those of mathematicians. While an artificial scientist expands its knowledge, it remains biased towards the simplest, least costly experiments that still have surprising outcomes, until they become boring. We present an empirical analysis of the automatic generation of interesting experiments. In the first setting, we investigate self-invented experiments in a reinforcement-providing environment and show that they lead to effective exploration. In the second setting, pure thought experiments are implemented as the weights of recurrent neural networks generated by a neural experiment generator. Initially interesting thought experiments may become boring over time.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Point-of-Care Ultrasound (POCUS) refers to clinician-performed and interpreted ultrasonography at the patient's bedside. Interpreting these images requires a high level of expertise, which may not be available during emergencies. In this paper, we support POCUS by developing classifiers that can aid medical professionals by diagnosing whether or not a patient has pneumothorax. We decomposed the task into multiple steps, using YOLOv4 to extract relevant regions of the video and a 3D sparse coding model to represent video features. Given the difficulty in acquiring positive training videos, we trained a small-data classifier with a maximum of 15 positive and 32 negative examples. To counteract this limitation, we leveraged subject matter expert (SME) knowledge to limit the hypothesis space, thus reducing the cost of data collection. We present results using two lung ultrasound datasets and demonstrate that our model is capable of achieving performance on par with SMEs in pneumothorax identification. We then developed an iOS application that runs our full system in less than 4 seconds on an iPad Pro, and less than 8 seconds on an iPhone 13 Pro, labeling key regions in the lung sonogram to provide interpretable diagnoses.
translated by 谷歌翻译
估计与机器学习预测(ML)模型相关的不确定性对于评估其稳健性和预测能力至关重要。在此提交中,我们介绍了Mapie(模型不可知的预测间隔估计器),这是一个开源Python库,可量化单输出回归和多类分类任务的ML模型的不确定性。Mapie实施了保形预测方法,使用户可以轻松地计算出在边际覆盖范围上具有强大理论保证的不确定性,并在模型或基础数据分布上进行了轻微的假设。Mapie托管在Scikit-Learn-Contrib上,完全“ Scikit-Learn兼容”。因此,它接受带有Scikit-Learn API的任何类型的回归器或分类器。该库可在以下网址获得:https://github.com/scikit-learn-contrib/mapie/。
translated by 谷歌翻译
闭环水库管理(CLRM)在资产的生命中多次进行历史匹配和生产优化,可以为指定目标提供显着改善。由于数据同化和优化所需的大量流量模拟,这些过程在计算上昂贵。现有的CLRM程序是通过资产应用的,而无需利用可能在范围资产中有用的信息。在这里,我们开发了一个CLRM框架,用于多个井数的多个资产。我们使用深度强化学习来培训适用于所有资产的单一全球控制政策。新框架是最近引入的单个资产控制政策方法的扩展。将嵌入层纳入表示形式,以处理针对不同资产出现的不同数量的决策变量。由于全球控制策略从多个资产中学习了有用功能的统一表示,因此构造比逐项培训要便宜(我们在示例中观察到大约3倍加速)。生产优化问题包括对井设置的相对变化约束,这使得适合实际使用的结果。我们将多资产的CLRM框架应用于2D和3D水浸水的示例。在这两种情况下,都考虑了四个具有不同井计数,井配置和地统计描述的资产。数值实验表明,全球控制策略为2D和3D案例提供了客观函数值,这些策略与每个资产单独培训的控制策略中几乎相同。这一有希望的发现表明,多资产的CLRM确实可能代表了可行的实践策略。
translated by 谷歌翻译
分析运动表现或预防伤害需要捕获人体在某些运动中施加的地面反作用力(GRF)。标准实践在受控环境中使用与力板配对的物理标记,但这是由于高成本,冗长的实现时间和重复实验中的差异所破坏。因此,我们提出了视频中的GRF推论。尽管最近的工作使用LSTM从2D观点估算GRF,但它们的建模和表示能力可能受到限制。首先,我们建议使用变压器体系结构从视频任务中解决GRF,这是第一个这样做的。然后,我们引入了新的损失,以最大程度地减少回归曲线中的高影响峰。我们还表明,对2D到3D人类姿势估计的训练和多任务学习可以提高对看不见动作的概括。在此不同的任务上进行预训练时,在较小(稀有)GRF数据集上进行填充时,可以提供良好的初始权重。我们评估了Laas Parkour和新收集的钳子数据集;与先前的方法相比,我们出现的误差降低了19%。
translated by 谷歌翻译
鉴于在特殊命令输入中编码的目标,目标条件的强化学习(RL)旨在学习最佳政策。在这里,我们研究了目标条件的神经网(NNS),这些神经网已经学会以特定于上下文特定的重量矩阵形式生成深度NN策略,类似于1990年代的快速体重程序员和其他方法。使用表单的上下文命令“生成实现预期回报的策略”,我们的NN生成器将对参数空间的强大探索与跨命令的概括相结合,以迭代地找到越来越更好的策略。体重共享的超级核武器和策略嵌入形式缩放了我们生成深度NN的方法。实验表明,单个学识渊博的政策生成器如何制定在培训过程中获得任何回报的政策。最后,我们在表现出竞争性能的一系列连续控制任务上评估了算法。我们的代码是公开的。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译