在这项工作中,我们专注于生成嘈杂的,教学视频的图形表示,以供视频理解。我们提出了一种自制,可解释的方法,该方法不需要任何图形表示的注释,这将是昂贵且耗时的。我们试图通过呈现语义视频图或SVGraph来克服“黑匣子”学习限制,这是一种多模式的方法,它利用叙述来实现学习图的语义解释性。SVGraph 1)依靠多种方式之间的一致性来学习统一的图形结构,并借助跨模式的注意力和2)在语义分配的帮助下分配语义解释,从而从视频叙述中捕获语义。我们在多个数据集上执行实验,并演示语义图学习中SVGraph的解释性。
translated by 谷歌翻译
与单模式学习相比,大型数据集上的联合视觉和语言建模最近在多模式任务中表现出了良好的进步。但是,这些方法对现实世界扰动的鲁棒性尚未被研究。在这项工作中,我们对此类模型进行了首次广泛的鲁棒性研究,以针对针对视频和语言的各种现实世界的扰动。我们专注于文本到视频检索,并提出了两个大型基准数据集,即MSRVTT-P和YouCook2-P,它们利用了90个不同的视觉和35个不同的文本扰动。该研究揭示了一些有趣的发现:1)当文本受到干扰而不是视频扰动时,研究的模型更加可靠。 3)与跨注意时,使用两个分支编码器通常更健壮。我们希望这项研究能够作为基准,并指导强大的多模式学习的未来研究。
translated by 谷歌翻译
近年来,我们在视频动作识别方面取得了巨大进展。有几种基于卷积神经网络(CNN)的模型,采用了一些基于变压器的方法,可在现有基准数据集上提供最先进的性能。但是,对于这些模型,尚未研究大规模的鲁棒性,这对于现实世界应用而言是关键方面。在这项工作中,我们对这些现有模型进行大规模鲁棒性分析,以供视频识别。我们主要关注因现实世界扰动而不是对抗性扰动引起的分配变化的鲁棒性。我们提出了四个不同的基准数据集,即HMDB-51P,UCF-101P,Kinetics-400P和SSV2P,并研究了六种针对90种不同扰动的六种不同最先进的动作识别模型的鲁棒性。该研究揭示了一些有趣的发现,1)基于变压器的模型与基于CNN的模型相比,对于大多数扰动,基于变压器的模型始终更健壮,2)预训练有助于基于变压器的模型比基于CNN的模型更适合不同的扰动,而3)所有研究的模型对动力学数据集的时间扰动都具有鲁棒性,但在SSV2上却不是。这表明时间信息对于SSV2数据集的动作标签预​​测比动力学数据集更为重要。我们希望这项研究能够作为在强大的视频行动识别中进行未来研究的基准。有关该项目的更多详细信息,请访问https://rose-ar.github.io/。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译