Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
预测时间序列数据代表了数据科学和知识发现研究的新兴领域,其广泛应用程序从股票价格和能源需求预测到早期预测流行病。在过去的五十年中,已经提出了许多统计和机器学习方法,对高质量和可靠预测的需求。但是,在现实生活中的预测问题中,存在基于上述范式之一的模型是可取的。因此,需要混合解决方案来弥合经典预测方法与现代神经网络模型之间的差距。在这种情况下,我们介绍了一个概率自回归神经网络(PARNN)模型,该模型可以处理各种复杂的时间序列数据(例如,非线性,非季节性,远程依赖性和非平稳性)。拟议的PARNN模型是通过建立综合运动平均值和自回归神经网络的融合来构建的,以保持个人的解释性,可伸缩性和``白色盒子样''的预测行为。通过考虑相关的马尔可夫链的渐近行为,获得了渐近平稳性和几何形状的足够条件。与先进的深度学习工具不同,基于预测间隔的PARNN模型的不确定性量化。在计算实验期间,Parnn在各种各样的现实世界数据集中,超过了标准统计,机器学习和深度学习模型(例如,变形金刚,Nbeats,Deepar等),来自宏观经济学,旅游,能源,流行病学和其他人的真实数据集集合 - 期,中期和长期预测。与最先进的预报相比,与最佳方法相比,与最佳方法进行了多重比较,以展示该提案的优越性。
translated by 谷歌翻译
在软件开发过程中,开发人员需要回答有关代码语义方面的查询。即使已经用神经方法进行了广泛的自然语言研究,但尚未探索使用神经网络对代码回答语义查询的问题。这主要是因为没有现有的数据集,具有提取性问答和答案对,涉及复杂概念和较长推理的代码。我们通过构建一个名为Codequeries的新的,策划的数据集并提出了一种关于代码的神经问题方法来弥合这一差距。我们基于最先进的预训练的代码模型,以预测答案和支持事实跨度。给定查询和代码,只有一些代码可能与回答查询有关。我们首先在理想的环境下进行实验,其中仅给出了模型的相关代码,并表明我们的模型做得很好。然后,我们在三个务实的考虑因素下进行实验:(1)扩展到大尺寸的代码,(2)从有限数量的示例中学习,(3)代码中对次要语法错误的鲁棒性。我们的结果表明,虽然神经模型可以抵御代码中的次要语法错误,代码的大小增加,与查询无关的代码的存在以及减少的培训示例数量限制了模型性能。我们正在释放数据和模型,以促进未来关于回答代码语义查询的问题的工作。
translated by 谷歌翻译