事情互联网(物联网)正处于重大范式转变的边缘。在未来的IOT系统中,IOFT,云将被人群代替模型训练被带到边缘的人群,允许IOT设备协作提取知识并构建智能分析/型号,同时保持本地存储的个人数据。这种范式转变被IOT设备的计算能力巨大增加以及分散和隐私保留模型培训的最近进步,作为联合学习(FL)。本文为IOFT提供了愿景,并系统概述当前努力实现这一愿景。具体而言,我们首先介绍IOFT的定义特征,并讨论了三维内部的分散推断的流动方法,机会和挑战:(i)全局模型,最大化跨所有IOT设备的实用程序,(ii)个性化模型所有设备的借款强度都保留了自己的模型,(iii)一个迅速适应新设备或学习任务的元学习模型。通过描述Ioft通过域专家镜头重塑不同行业的愿景和挑战来结束。这些行业包括制造,运输,能源,医疗保健,质量和可靠性,商业和计算。
translated by 谷歌翻译
成本敏感的分类对于错误分类错误的成本差异很大,至关重要。但是,过度参数化对深神经网络(DNNS)的成本敏感建模构成了基本挑战。 DNN完全插值训练数据集的能力可以渲染DNN,纯粹在训练集上进行评估,无效地区分了成本敏感的解决方案和其总体准确性最大化。这需要重新思考DNN中的成本敏感分类。为了应对这一挑战,本文提出了一个具有成本敏感的对抗数据增强(CSADA)框架,以使过度参数化的模型成本敏感。总体想法是生成针对性的对抗示例,以推动成本感知方向的决策边界。这些有针对性的对抗样本是通过最大化关键分类错误的可能性而产生的,并用于训练一个模型,以更加保守的对成对的决策。公开可用的有关著名数据集和药物药物图像(PMI)数据集的实验表明,我们的方法可以有效地最大程度地减少整体成本并减少关键错误,同时在整体准确性方面达到可比的性能。
translated by 谷歌翻译
本文提出了一种简单而有效的方法,可以改善两种情况下的直接(x-to-y)翻译:零射击和直接数据时。我们将编码器和解码器的输入令牌修改为包括源和目标语言的信号。我们在从头开始训练或使用拟议的设置对验证模型进行填充时显示出绩效增长。在实验中,根据检查点选择标准,我们的方法在内部数据集上显示了近10.0个BLEU点的增益。在WMT评估活动中,从英语性能提高了4.17和2.87 BLEU点,在零射击设置和直接数据可用于培训时。而X-to-y在零射基线上提高了1.29 BLEU,而在多到许多基线上提高了0.44。在低资源设置中,我们在X-TO-Y域数据上进行填充时会看到1.5〜1.7点的改善。
translated by 谷歌翻译
强化学习进行推荐和实验的现实应用面临实际挑战:不同匪徒的相对奖励可以在学习代理的一生中发展。要处理这些非机构案件,代理商必须忘记一些历史知识,因为它可能不再与最小化的遗憾有关。我们提出了一种处理非平稳性的解决方案,该解决方案适合于大规模部署,以向业务运营商提供自动适应性优化。我们的解决方案旨在提供可解释的学习,这些学习可以被人类信任,同时响应非平稳性以最大程度地减少遗憾。为此,我们开发了一种自适应的贝叶斯学习代理,该学习者采用了一种新型的动态记忆形式。它可以通过统计假设检验来实现可解释性,通过在比较奖励并动态调整其内存以实现此功能时,通过统计能力的设定点来实现统计能力的设定点。根据设计,代理对不同种类的非平稳性不可知。使用数值模拟,我们将其绩效与现有提案进行比较,并表明在多个非平稳场景下,我们的代理人正确地适应了真实奖励的实际变化。在所有强盗解决方案中,学习和实现最大表现之间都有明确的权衡。与另一种类似强大的方法相比,我们的解决方案在此权衡方面的一个不同点:我们优先考虑可解释性,这依靠更多的学习,而付出了一些遗憾。我们描述了自动优化的大规模部署的体系结构,即服务,我们的代理商在适应不断变化的情况的同时可以实现可解释性。
translated by 谷歌翻译
我们描述了一个轻巧但性能的系统,用于高参数优化,该系统近似可最大程度地减少通过使用目标优先级标量标量的多重性能目标获得的总体标量成本函数。它还支持权衡模式,目标是通过与用户互动来找到目标之间的适当权衡。我们关注的是在数十个超参数的顺序上,每个方案都具有各种属性,例如一系列连续值或有限的值列表,以及是否应在线性或对数刻度上进行处理。该系统支持多个异步模拟,并且对模拟散乱者和故障具有鲁棒性。
translated by 谷歌翻译