The connectivity-aware path design is crucial in the effective deployment of autonomous Unmanned Aerial Vehicles (UAVs). Recently, Reinforcement Learning (RL) algorithms have become the popular approach to solving this type of complex problem, but RL algorithms suffer slow convergence. In this paper, we propose a Transfer Learning (TL) approach, where we use a teacher policy previously trained in an old domain to boost the path learning of the agent in the new domain. As the exploration processes and the training continue, the agent refines the path design in the new domain based on the subsequent interactions with the environment. We evaluate our approach considering an old domain at sub-6 GHz and a new domain at millimeter Wave (mmWave). The teacher path policy, previously trained at sub-6 GHz path, is the solution to a connectivity-aware path problem that we formulate as a constrained Markov Decision Process (CMDP). We employ a Lyapunov-based model-free Deep Q-Network (DQN) to solve the path design at sub-6 GHz that guarantees connectivity constraint satisfaction. We empirically demonstrate the effectiveness of our approach for different urban environment scenarios. The results demonstrate that our proposed approach is capable of reducing the training time considerably at mmWave.
translated by 谷歌翻译
流程挖掘是一组技术,该技术被组织用于理解和改善其运营流程。设计任何流程重新设计程序的第一步是找到过程改进机会。在现有的工作中,通常假定在事先检测或易于检测到的有问题的过程实例集合中发生不良结果。因此,过程增强程序涉及在这些过程实例中找到根本原因和问题的处理。例如,有问题的实例集被视为具有异常值或值的值或大于该过程特征之一中给定阈值的值。但是,在各种情况下,使用这种方法,遗漏了许多流程增强机会,而不是这些有问题的过程实例所捕获的。为了克服这个问题,我们将找到过程增强区域作为上下文敏感的异常/异常检测问题。我们将过程增强区域定义为一组情况(过程实例或过程实例的前缀),其中过程性能令人惊讶。我们的目的是表征那些过程/结果/结果与在类似情况下的性能/结果明显不同的情况。为了评估拟议方法的有效性和相关性,我们已经对几个现实生活事件日志进行了实施和评估。
translated by 谷歌翻译
叙事中的事件可以通过其参与者的基本状态理解为一致的整体。通常,这些参与者在叙述中没有明确提及,而是通过常识性或推论填写。理解叙述的模型应该能够推断出这些隐性参与者状态,以及有关这些状态对叙事的影响的原因。为了促进这一目标,我们介绍了一个新的众包参与者指出的数据集意大利面。该数据集包含有效的,可推断的参与者状态;对国家的反事实扰动;如果反事实是真实的,那么故事的变化将是必要的。我们介绍了三项基于州的推理任务,这些任务测试了一个故事何时由故事启用,修改一个反事实状态的故事,并解释给定经过修订的故事的最有可能的状态变化。我们的基准测试实验表明,尽管当今的LLM能够在某种程度上推理有关州的推理,但仍有很大的改进空间,这表明了未来研究的潜在途径。
translated by 谷歌翻译