模拟湍流的模拟,尤其是在大气中云的边缘,是一项固有的挑战。迄今为止,执行此类实验的最佳计算方法是直接数值模拟(DNS)。 DNS涉及在三维空间中的离散网格盒上解决流体流的非线性部分微分方程,也称为Navier-Stokes方程。这是一个有价值的范式,它指导了数值天气预测模型来计算降雨形成。但是,对于天气预报社区的实用实用程序,不能为DNS执行DNS。在这里,我们介绍了DeepClouds.ai,这是一个3D-UNET,该Unet模拟了上升的云DNS实验的输出。通过将内部3D立方体映射到完整的3D立方体,从DNS离散化的网格模拟的输出中映射到完整的3D立方体来解决DNS中域大小的问题。我们的方法有效地捕获了湍流动力学,而无需解决复杂的动力核心。基线表明,基于深度学习的仿真与通过各种得分指标衡量的基于部分差异方程的模型相媲美。该框架可用于通过在大气中的大物理领域进行模拟来进一步进一步发展湍流和云流的科学。通过高级参数化方案改善天气预测,这将导致社会福利。
translated by 谷歌翻译
基于深度学习(DL)的降尺度已成为地球科学中的流行工具。越来越多的DL方法被采用来降低降水量的降水量数据,并在局部(〜几公里甚至更小)的尺度上产生更准确和可靠的估计值。尽管有几项研究采用了降水的动力学或统计缩减,但准确性受地面真理的可用性受到限制。衡量此类方法准确性的一个关键挑战是将缩小的数据与点尺度观测值进行比较,这些观察值通常在如此小的尺度上是无法使用的。在这项工作中,我们进行了基于DL的缩减,以估计印度气象部(IMD)的当地降水数据,该数据是通过近似从车站位置到网格点的价值而创建的。为了测试不同DL方法的疗效,我们采用了四种不同的缩小方法并评估其性能。所考虑的方法是(i)深度统计缩小(DEEPSD),增强卷积长期记忆(ConvlstM),完全卷积网络(U-NET)和超分辨率生成对抗网络(SR-GAN)。 SR-GAN中使用的自定义VGG网络是在这项工作中使用沉淀数据开发的。结果表明,SR-GAN是降水数据缩减的最佳方法。 IMD站的降水值验证了缩小的数据。这种DL方法为统计缩减提供了有希望的替代方法。
translated by 谷歌翻译
降水控制地球气候,其日常时空波动具有重大的社会经济影响。通过改善温度和压力等各种物理领域的预测来衡量数值天气预测(NWP)的进步;然而,降水预测中存在很大的偏见。我们通过深度学习来增强著名的NWP模型CFSV2的输出,以创建一个混合模型,该模型在1日,2天和3天的交货时间内改善了短期全局降水量。为了混合使用,我们通过使用修改的DLWP-CS体系结构来解决全局数据的球形,从而将所有字段转换为立方体投影。动态模型沉淀和表面温度输出被喂入改良的DLWP-CS(UNET),以预测地面真相降水。虽然CFSV2的平均偏差为土地+5至+7毫米/天,但多元深度学习模型将其降低到-1至+1 mm/天。卡特里娜飓风在2005年,伊万飓风,2010年的中国洪水,2005年的印度洪水和2008年的缅甸风暴纳尔吉斯(Myanmar Storm Nargis)用于确认混合动力学深度学习模型的技能大大提高。 CFSV2通常在空间模式中显示中度至大偏置,并在短期时间尺度上高估了沉淀。拟议的深度学习增强了NWP模型可以解决这些偏见,并大大改善了预测降水的空间模式和幅度。与CFSV2相比,深度学习增强了CFSV2在重要的土地区域的平均偏差为1天铅1天。时空深度学习系统开辟了途径,以进一步提高全球短期降水预测的精度和准确性。
translated by 谷歌翻译
该调查侧重于地球系统科学中的当前问题,其中可以应用机器学习算法。它概述了以前的工作,在地球科学部,印度政府的持续工作,以及ML算法的未来应用到一些重要的地球科学问题。我们提供了与本次调查的比较的比较,这是与机器学习相关的多维地区的思想地图,以及地球系统科学(ESS)中机器学习的Gartner的炒作周期。我们主要关注地球科学的关键组成部分,包括大气,海洋,地震学和生物圈,以及覆盖AI / ML应用程序统计侦查和预测问题。
translated by 谷歌翻译
气候变化已成为最大的全球性问题之一,越来越多地损害地球的居住地。最近的发展如加利福尼亚州和加拿大的非凡热浪,以及德国的毁灭性洪水指向气候变化在极端天气不断增长的频率下的作用。在过去的五十年中,天气和气候的数值模型已经看到了巨大的改善,但仍有严格的限制仍有待克服。空间和时间本地化预测是需要一个小时,以便有效适应措施,以尽量减少生命和财产丧失。基于人工智能的方法正在展示有希望的导致改进预测,但仍然受到必要硬件和软件所需的可用性来处理地球地球的规模所需的软硬件和软件的限制。量子计算是一种新兴范式,在几个领域中发现了潜在的适用性。在这种意见作品中,我们认为为量子计算机设计的人工智能算法的新发展 - 也称为量子人工智能(QAI) - 可以提供进一步进一步的气候变化科学所需的关键突破。预计天气和气候预测的改善将级联到众多社会福利。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译