我们使用所述环境中常用的量化实施了安全多方计算(MPC)中神经网络的培训。我们是第一个呈现MNIST分类器纯粹在MPC中训练的MNIST分类器,该分类器占据通过宣传计算训练的相同卷积神经网络准确性的0.2%。更具体地说,我们已经训练了一个在3.5小时内具有两个卷积和两个密集层至99.2%精度的网络(精度为99%的小时)。我们还为CIFAR-10实施了Alexnet,该Alexnet在几个小时内收敛。我们开发了用于指示和平方根逆的新方案。最后,我们在多达十个政党的一系列MPC安全模型中介绍了实验,包括诚实和不诚实的多数以及半honest和恶意安全。
translated by 谷歌翻译
在许多机器学习的情况下,研究表明,培训数据的开发可能比分类器本身的选择和建模更高。因此,已经开发了数据增强方法来通过人为创建的培训数据来改善分类器。在NLP中,为提供新的语言模式的文本转换建立通用规则存在挑战。在本文中,我们介绍并评估一种适合于长期和短文的分类器的性能的文本生成方法。通过我们的文本生成方法的增强,我们在评估简短和长期文本任务时取得了令人鼓舞的改进。尤其是在小型数据分析方面,与NO增强基线和其他数据增强技术相比,在构建的低数据状态下,添加精度的提高到达15.53%和3.56%。由于这些构建制度的当前轨道并非普遍适用,因此我们还显示了几个现实世界中低数据任务(高达+4.84 F1得分)的重大改进。由于我们从许多角度(总共11个数据集)评估了该方法,因此我们还观察到该方法可能不合适的情况。我们讨论了在不同类型的数据集上成功应用我们的方法的含义和模式。
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Topic modeling is widely used for analytically evaluating large collections of textual data. One of the most popular topic techniques is Latent Dirichlet Allocation (LDA), which is flexible and adaptive, but not optimal for e.g. short texts from various domains. We explore how the state-of-the-art BERTopic algorithm performs on short multi-domain text and find that it generalizes better than LDA in terms of topic coherence and diversity. We further analyze the performance of the HDBSCAN clustering algorithm utilized by BERTopic and find that it classifies a majority of the documents as outliers. This crucial, yet overseen problem excludes too many documents from further analysis. When we replace HDBSCAN with k-Means, we achieve similar performance, but without outliers.
translated by 谷歌翻译
With the progress of sensor technology in wearables, the collection and analysis of PPG signals are gaining more interest. Using Machine Learning, the cardiac rhythm corresponding to PPG signals can be used to predict different tasks such as activity recognition, sleep stage detection, or more general health status. However, supervised learning is often limited by the amount of available labeled data, which is typically expensive to obtain. To address this problem, we propose a Self-Supervised Learning (SSL) method with a pretext task of signal reconstruction to learn an informative generalized PPG representation. The performance of the proposed SSL framework is compared with two fully supervised baselines. The results show that in a very limited label data setting (10 samples per class or less), using SSL is beneficial, and a simple classifier trained on SSL-learned representations outperforms fully supervised deep neural networks. However, the results reveal that the SSL-learned representations are too focused on encoding the subjects. Unfortunately, there is high inter-subject variability in the SSL-learned representations, which makes working with this data more challenging when labeled data is scarce. The high inter-subject variability suggests that there is still room for improvements in learning representations. In general, the results suggest that SSL may pave the way for the broader use of machine learning models on PPG data in label-scarce regimes.
translated by 谷歌翻译
Satellite image analysis has important implications for land use, urbanization, and ecosystem monitoring. Deep learning methods can facilitate the analysis of different satellite modalities, such as electro-optical (EO) and synthetic aperture radar (SAR) imagery, by supporting knowledge transfer between the modalities to compensate for individual shortcomings. Recent progress has shown how distributional alignment of neural network embeddings can produce powerful transfer learning models by employing a sliced Wasserstein distance (SWD) loss. We analyze how this method can be applied to Sentinel-1 and -2 satellite imagery and develop several extensions toward making it effective in practice. In an application to few-shot Local Climate Zone (LCZ) prediction, we show that these networks outperform multiple common baselines on datasets with a large number of classes. Further, we provide evidence that instance normalization can significantly stabilize the training process and that explicitly shaping the embedding space using supervised contrastive learning can lead to improved performance.
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
Transformers have attained superior performance in natural language processing and computer vision. Their self-attention and feedforward layers are overparameterized, limiting inference speed and energy efficiency. Tensor decomposition is a promising technique to reduce parameter redundancy by leveraging tensor algebraic properties to express the parameters in a factorized form. Prior efforts used manual or heuristic factorization settings without hardware-aware customization, resulting in poor hardware efficiencies and large performance degradation. In this work, we propose a hardware-aware tensor decomposition framework, dubbed HEAT, that enables efficient exploration of the exponential space of possible decompositions and automates the choice of tensorization shape and decomposition rank with hardware-aware co-optimization. We jointly investigate tensor contraction path optimizations and a fused Einsum mapping strategy to bridge the gap between theoretical benefits and real hardware efficiency improvement. Our two-stage knowledge distillation flow resolves the trainability bottleneck and thus significantly boosts the final accuracy of factorized Transformers. Overall, we experimentally show that our hardware-aware factorized BERT variants reduce the energy-delay product by 5.7x with less than 1.1% accuracy loss and achieve a better efficiency-accuracy Pareto frontier than hand-tuned and heuristic baselines.
translated by 谷歌翻译
Front-door adjustment is a classic technique to estimate causal effects from a specified directed acyclic graph (DAG) and observed data. The advantage of this approach is that it uses observed mediators to identify causal effects, which is possible even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given DAG, with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the graph. In our work, we give the first linear-time, i.e. $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity, as the size of the input is $\Omega(n+m)$. We also provide an algorithm to enumerate all front-door adjustment sets in a given DAG with delay $O(n(n + m))$. These results improve the algorithms by Jeong et al. [2022] for the two tasks by a factor of $n^3$, respectively.
translated by 谷歌翻译