The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译
从过去的经验中发现有用的行为并将其转移到新任务的能力被认为是自然体现智力的核心组成部分。受神经科学的启发,发现在瓶颈状态下切换的行为一直被人们追求,以引起整个任务的最小描述长度的计划。先前的方法仅支持在线,政策,瓶颈状态发现,限制样本效率或离散的状态行动域,从而限制适用性。为了解决这个问题,我们介绍了基于模型的离线选项(MO2),这是一个脱机后视框架,支持在连续的状态行动空间上发现样品效率高效瓶颈选项。一旦脱机而在源域上学习了瓶颈选项,它们就会在线转移,以改善转移域的探索和价值估计。我们的实验表明,在复杂的长途连续控制任务上,具有稀疏,延迟的奖励,MO2的属性至关重要,并且导致性能超过最近的选项学习方法。其他消融进一步证明了对期权可预测性和信用分配的影响。
translated by 谷歌翻译
机器人将在整个生命周期中都会经历非平稳环境动态:机器人动态可能会因磨损而改变,或者周围的环境可能会随着时间而改变。最终,机器人在遇到的所有环境变化中都应表现良好。同时,它仍然应该能够在新环境中快速学习。我们在这样的终身学习环境中确定了强化学习(RL)的两个挑战:首先,现有的现有非政策算法在保持旧环境中保持良好绩效和有效学习之间的权衡方面挣扎尽管将所有数据保留在重播缓冲区中,但新环境。我们提出了离线蒸馏管道,以通过将培训程序分离为在线互动阶段和离线蒸馏阶段来打破这一权衡。第二,我们发现,通过从一生中多个环境中的不平衡的非政策数据进行培训会产生重要性能下降。我们确定这种性能下降是由数据集中质量不平衡和大小的组合引起的,这些质量和大小加剧了Q功能的外推误差。在蒸馏阶段,我们通过使策略更接近生成数据的行为策略来应用一个简单的解决方案。在实验中,我们在各种环境变化中通过模拟的两足机器人步行任务证明了这两个挑战和拟议的解决方案。我们表明,离线蒸馏管线在所有遇到的环境中都能取得更好的性能,而不会影响数据收集。我们还提供了一项全面的实证研究,以支持我们对数据不平衡问题的假设。
translated by 谷歌翻译
对于在现实世界中运营的机器人来说,期望学习可以有效地转移和适应许多任务和场景的可重复使用的行为。我们提出了一种使用分层混合潜变量模型来从数据中学习抽象运动技能的方法。与现有工作相比,我们的方法利用了离散和连续潜在变量的三级层次结构,以捕获一组高级行为,同时允许如何执行它们的差异。我们在操纵域中展示该方法可以有效地将离线数据脱落到不同的可执行行为,同时保留连续潜变量模型的灵活性。由此产生的技能可以在新的任务,看不见的对象和州内转移和微调到基于视觉的策略,与现有的技能和仿制的方法相比,产生更好的样本效率和渐近性能。我们进一步分析了技能最有益的方式以及何时:他们鼓励定向探索来涵盖与任务相关的国家空间的大区域,使其在挑战稀疏奖励环境中最有效。
translated by 谷歌翻译
连续控制设置中的复杂顺序任务通常需要代理在其状态空间中成功遍历一组“窄段”。通过以样本有效的方式解决具有稀疏奖励的这些任务对现代钢筋(RL)构成了挑战,由于问题的相关的长地平性,并且在学习期间缺乏充足的正信号。已应用各种工具来解决这一挑战。当可用时,大型演示可以指导代理探索。后威尔同时释放不需要额外的信息来源。然而,现有的战略基于任务不可行的目标分布探索,这可以使长地平线的解决方案不切实际。在这项工作中,我们扩展了后视可释放的机制,以指导沿着一小组成功示范所暗示的特定任务特定分布的探索。我们评估了四个复杂,单身和双臂,机器人操纵任务的方法,对抗强合适的基线。该方法需要较少的演示来解决所有任务,并且达到明显更高的整体性能作为任务复杂性增加。最后,我们研究了提出的解决方案对输入表示质量和示范人数的鲁棒性。
translated by 谷歌翻译
连续控制的强化学习(RL)通常采用其支持涵盖整个动作空间的分布。在这项工作中,我们调查了培训的代理经常更喜欢在该空间的界限中普遍采取行动的俗称已知的现象。我们在最佳控制中汲取理论联系,以发出Bang-Bang行为的出现,并在各种最近的RL算法中提供广泛的实证评估。我们通过伯努利分布替换正常高斯,该分布仅考虑沿着每个动作维度的极端 - Bang-Bang控制器。令人惊讶的是,这在几种连续控制基准测试中实现了最先进的性能 - 与机器人硬件相比,能量和维护成本影响控制器选择。由于勘探,学习和最终解决方案纠缠在RL中,我们提供了额外的模仿学习实验,以减少探索对我们分析的影响。最后,我们表明我们的观察结果概括了旨在模拟现实世界挑战和评估因素来减轻Bang-Bang解决方案的因素的环境。我们的调查结果强调了对基准测试连续控制算法的挑战,特别是在潜在的现实世界应用中。
translated by 谷歌翻译
In recent years, several metrics have been developed for evaluating group fairness of rankings. Given that these metrics were developed with different application contexts and ranking algorithms in mind, it is not straightforward which metric to choose for a given scenario. In this paper, we perform a comprehensive comparative analysis of existing group fairness metrics developed in the context of fair ranking. By virtue of their diverse application contexts, we argue that such a comparative analysis is not straightforward. Hence, we take an axiomatic approach whereby we design a set of thirteen properties for group fairness metrics that consider different ranking settings. A metric can then be selected depending on whether it satisfies all or a subset of these properties. We apply these properties on eleven existing group fairness metrics, and through both empirical and theoretical results we demonstrate that most of these metrics only satisfy a small subset of the proposed properties. These findings highlight limitations of existing metrics, and provide insights into how to evaluate and interpret different fairness metrics in practical deployment. The proposed properties can also assist practitioners in selecting appropriate metrics for evaluating fairness in a specific application.
translated by 谷歌翻译
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
translated by 谷歌翻译
Classically, the development of humanoid robots has been sequential and iterative. Such bottom-up design procedures rely heavily on intuition and are often biased by the designer's experience. Exploiting the non-linear coupled design space of robots is non-trivial and requires a systematic procedure for exploration. We adopt the top-down design strategy, the V-model, used in automotive and aerospace industries. Our co-design approach identifies non-intuitive designs from within the design space and obtains the maximum permissible range of the design variables as a solution space, to physically realise the obtained design. We show that by constructing the solution space, one can (1) decompose higher-level requirements onto sub-system-level requirements with tolerance, alleviating the "chicken-or-egg" problem during the design process, (2) decouple the robot's morphology from its controller, enabling greater design flexibility, (3) obtain independent sub-system level requirements, reducing the development time by parallelising the development process.
translated by 谷歌翻译
Recent diffusion-based AI art platforms are able to create impressive images from simple text descriptions. This makes them powerful tools for concept design in any discipline that requires creativity in visual design tasks. This is also true for early stages of architectural design with multiple stages of ideation, sketching and modelling. In this paper, we investigate how applicable diffusion-based models already are to these tasks. We research the applicability of the platforms Midjourney, DALL-E 2 and StableDiffusion to a series of common use cases in architectural design to determine which are already solvable or might soon be. We also analyze how they are already being used by analyzing a data set of 40 million Midjourney queries with NLP methods to extract common usage patterns. With this insights we derived a workflow to interior and exterior design that combines the strengths of the individual platforms.
translated by 谷歌翻译