The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography (CT). As the (na\"{\i}ve) solution does not depend on the measured data continuously, regularization is needed to re-establish a continuous dependence. In this work, we investigate simple, but yet still provably convergent approaches to learning linear regularization methods from data. More specifically, we analyze two approaches: One generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of [1], and one tailored approach in the Fourier domain that is specific to CT-reconstruction. We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on. Finally, we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically, discuss their advantages and disadvantages and investigate the effect of discretization errors at different resolutions.
translated by 谷歌翻译
我们引入了一种新型的数学公式,用于训练以(可能非平滑)近端图作为激活函数的馈送前向神经网络的培训。该公式基于布雷格曼的距离,关键优势是其相对于网络参数的部分导数不需要计算网络激活函数的导数。我们没有使用一阶优化方法和后传播的组合估算参数(如最先进的),而是建议使用非平滑一阶优化方法来利用特定结构新颖的表述。我们提出了几个数值结果,这些结果表明,与更常规的培训框架相比,这些训练方法可以很好地很好地适合于培训基于神经网络的分类器和具有稀疏编码的(DeNoising)自动编码器。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifold of point clouds. Our theory provides theoretical guarantees and explicit bounds on the functional form of the graph Laplacian, in the case when it acts on functions defined close to singularities of the underlying manifold. We also propose methods that can be used to estimate these geometric properties of the point cloud, which are based on the theoretical guarantees.
translated by 谷歌翻译
Nearly all jurisdictions in the United States require a professional license exam, commonly referred to as "the Bar Exam," as a precondition for law practice. To even sit for the exam, most jurisdictions require that an applicant completes at least seven years of post-secondary education, including three years at an accredited law school. In addition, most test-takers also undergo weeks to months of further, exam-specific preparation. Despite this significant investment of time and capital, approximately one in five test-takers still score under the rate required to pass the exam on their first try. In the face of a complex task that requires such depth of knowledge, what, then, should we expect of the state of the art in "AI?" In this research, we document our experimental evaluation of the performance of OpenAI's `text-davinci-003` model, often-referred to as GPT-3.5, on the multistate multiple choice (MBE) section of the exam. While we find no benefit in fine-tuning over GPT-3.5's zero-shot performance at the scale of our training data, we do find that hyperparameter optimization and prompt engineering positively impacted GPT-3.5's zero-shot performance. For best prompt and parameters, GPT-3.5 achieves a headline correct rate of 50.3% on a complete NCBE MBE practice exam, significantly in excess of the 25% baseline guessing rate, and performs at a passing rate for both Evidence and Torts. GPT-3.5's ranking of responses is also highly-correlated with correctness; its top two and top three choices are correct 71% and 88% of the time, respectively, indicating very strong non-entailment performance. While our ability to interpret these results is limited by nascent scientific understanding of LLMs and the proprietary nature of GPT, we believe that these results strongly suggest that an LLM will pass the MBE component of the Bar Exam in the near future.
translated by 谷歌翻译
The future of population-based breast cancer screening is likely personalized strategies based on clinically relevant risk models. Mammography-based risk models should remain robust to domain shifts caused by different populations and mammographic devices. Modern risk models do not ensure adaptation across vendor-domains and are often conflated to unintentionally rely on both precursors of cancer and systemic/global mammographic information associated with short- and long-term risk, respectively, which might limit performance. We developed a robust, cross-vendor model for long-term risk assessment. An augmentation-based domain adaption technique, based on flavorization of mammographic views, ensured generalization to an unseen vendor-domain. We trained on samples without diagnosed/potential malignant findings to learn systemic/global breast tissue features, called mammographic texture, indicative of future breast cancer. However, training so may cause erratic convergence. By excluding noise-inducing samples and designing a case-control dataset, a robust ensemble texture model was trained. This model was validated in two independent datasets. In 66,607 Danish women with flavorized Siemens views, the AUC was 0.71 and 0.65 for prediction of interval cancers within two years (ICs) and from two years after screening (LTCs), respectively. In a combination with established risk factors, the model's AUC increased to 0.68 for LTCs. In 25,706 Dutch women with Hologic-processed views, the AUCs were not different from the AUCs in Danish women with flavorized views. The results suggested that the model robustly estimated long-term risk while adapting to an unseen processed vendor-domain. The model identified 8.1% of Danish women accounting for 20.9% of ICs and 14.2% of LTCs.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
In this work, a method for obtaining pixel-wise error bounds in Bayesian regularization of inverse imaging problems is introduced. The proposed method employs estimates of the posterior variance together with techniques from conformal prediction in order to obtain coverage guarantees for the error bounds, without making any assumption on the underlying data distribution. It is generally applicable to Bayesian regularization approaches, independent, e.g., of the concrete choice of the prior. Furthermore, the coverage guarantees can also be obtained in case only approximate sampling from the posterior is possible. With this in particular, the proposed framework is able to incorporate any learned prior in a black-box manner. Guaranteed coverage without assumptions on the underlying distributions is only achievable since the magnitude of the error bounds is, in general, unknown in advance. Nevertheless, experiments with multiple regularization approaches presented in the paper confirm that in practice, the obtained error bounds are rather tight. For realizing the numerical experiments, also a novel primal-dual Langevin algorithm for sampling from non-smooth distributions is introduced in this work.
translated by 谷歌翻译
The goal of this paper is to detect objects by exploiting their interrelationships. Rather than relying on predefined and labeled graph structures, we infer a graph prior from object co-occurrence statistics. The key idea of our paper is to model object relations as a function of initial class predictions and co-occurrence priors to generate a graph representation of an image for improved classification and bounding box regression. We additionally learn the object-relation joint distribution via energy based modeling. Sampling from this distribution generates a refined graph representation of the image which in turn produces improved detection performance. Experiments on the Visual Genome and MS-COCO datasets demonstrate our method is detector agnostic, end-to-end trainable, and especially beneficial for rare object classes. What is more, we establish a consistent improvement over object detectors like DETR and Faster-RCNN, as well as state-of-the-art methods modeling object interrelationships.
translated by 谷歌翻译