Laser-plasma physics has developed rapidly over the past few decades as lasers have become both more powerful and more widely available. Early experimental and numerical research in this field was dominated by single-shot experiments with limited parameter exploration. However, recent technological improvements make it possible to gather data for hundreds or thousands of different settings in both experiments and simulations. This has sparked interest in using advanced techniques from mathematics, statistics and computer science to deal with, and benefit from, big data. At the same time, sophisticated modeling techniques also provide new ways for researchers to deal effectively with situation where still only sparse data are available. This paper aims to present an overview of relevant machine learning methods with focus on applicability to laser-plasma physics and its important sub-fields of laser-plasma acceleration and inertial confinement fusion.
translated by 谷歌翻译
随着车身可穿戴感应技术的发展,人类活动的识别已成为一个有吸引力的研究领域。借助舒适的电子质地,传感器可以嵌入衣服中,以便可以长期记录人类运动。但是,一个长期存在的问题是如何处理通过相对于身体运动引入的运动人工制品。令人惊讶的是,最近的经验发现表明,与刚性连接的传感器相比,与固定的传感器相比,布置的传感器实际上可以实现更高的活动识别精度,尤其是在从短时间窗口中预测时。在这项工作中,引入了概率模型,其中通过织物传感记录的运动之间的统计距离增加了这种提高的准确性和呼吸。模型的预测在模拟和真实的人类运动捕获实验中得到了验证,很明显,这种反直觉效应是紧密捕获的。
translated by 谷歌翻译
从一个或多个未分类桩中挑选一个或多个物体对于机器人系统而言仍然是不平凡的。当桩由包含彼此纠缠的单个项目的颗粒材料(GM)组成时,尤其如此,导致挑选出更多的选择。这种容易发生的GM的关键特征之一是从桩中的主要物体延伸的突起存在。这项工作描述了后者在引起机械纠缠及其对选择一致性的影响方面所扮演的角色。 IT报告了实验,其中采摘具有不同突出长度(PLS)的GMS导致挑选质量差异增加了76%,这表明PL是采摘策略设计中的一项信息功能。此外,为了应对这种效果,它提出了一种新的传播(SNP)方法,可大大减少纠结,从而使选择更加一致。与试图从桩中的无缠结点进行选择的先前方法相比,提出的方法导致选择误差(PE)的降低高达51%,并显示出对先前看不见的GMS的良好概括。
translated by 谷歌翻译
感知,规划,估算和控制的当代方法允许机器人在不确定,非结构化环境中的远程代理中稳健运行。此进度现在创造了机器人不仅在隔离,而且在我们的复杂环境中运行的机器人。意识到这个机会需要一种高效且灵活的媒介,人类可以与协作机器人沟通。自然语言提供了一种这样的媒体,通过对自然语言理解的统计方法的重大进展,现在能够解释各种自由形式命令。然而,大多数当代方法需要机器人环境的详细,现有的空间语义地图,这些环境模拟了话语可能引用的可能引用的空间。因此,当机器人部署在新的,先前未知或部分观察到的环境中时,这些方法发生故障,特别是当环境的心理模型在人类运营商和机器人之间不同时。本文提供了一种新的学习框架的全面描述,允许现场和服务机器人解释并正确执行先验未知,非结构化环境中的自然语言指令。对于我们的方法而不是我们的语言作为“传感器” - 在话语中隐含的“传感器” - 推断的空间,拓扑和语义信息,然后利用这些信息来学习在潜在环境模型上的分布。我们将此分布纳入概率,语言接地模型中,并在机器人的动作空间的象征性表示中推断出分布。我们使用模仿学习来确定对环境和行为分布的原因的信仰空间政策。我们通过各种导航和移动操纵实验评估我们的框架。
translated by 谷歌翻译
Extracting complex structures from grid-based data is a common key step in automated medical image analysis. The conventional solution to recovering tree-structured geometries typically involves computing the minimal cost path through intermediate representations derived from segmentation masks. However, this methodology has significant limitations in the context of projective imaging of tree-structured 3D anatomical data such as coronary arteries, since there are often overlapping branches in the 2D projection. In this work, we propose a novel approach to predicting tree connectivity structure which reformulates the task as an optimization problem over individual steps of a recursive process. We design and train a two-stage model which leverages the UNet and Transformer architectures and introduces an image-based prompting technique. Our proposed method achieves compelling results on a pair of synthetic datasets, and outperforms a shortest-path baseline.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs). We begin a systematic computer-aided search for these objects. We develop and implement constraint-based algorithms build on reductions to $\mathrm{SAT}$ and $\mathrm{IP}$ to verify that puzzles are strong USPs, and to search for large strong USPs. We produce tight bounds on the maximum size of a strong USP for width $k \le 5$, construct puzzles of small width that are larger than previous work, and improve the upper bounds on strong USP size for $k \le 12$. Although our work only deals with puzzles of small-constant width, the strong USPs we find imply matrix multiplication algorithms that run in $O(n^\omega)$ time with exponent $\omega \le 2.66$. While our algorithms do not beat the fastest algorithms, our work provides evidence and, perhaps, a path to finding families of strong USPs that imply matrix multiplication algorithms that are more efficient than those currently known.
translated by 谷歌翻译
Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
translated by 谷歌翻译
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds).
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译