随着连接和自动化车辆(CAV)技术的出现,越来越需要在使用这种技术的同时评估驾驶员行为。在第一研究中,在驾驶模拟器环境中引入了使用CAV技术的行人碰撞警告(PCW)系统,以评估驾驶员制动行为,在jaywalking行人的存在下。招募了来自各种各样的社会经济背景的93名参与者,为这项研究招募了该研究的,为此开设了哈尔的摩市中心的虚拟网络。眼睛跟踪装置还用于观察分心和头部运动。对数逻辑加速故障时间(AFT)分配模型用于该分析,计算减速时间;从行人变得可见的那一刻到达到最小速度的点,让行人通过。 PCW系统的存在显着影响减速时间和减速率,因为它增加了前者并减少了后者,这证明了该系统在提供有效驾驶机动方面的有效性,通过大大降低速度。进行了混蛋分析,以分析制动和加速的突然性。凝视分析表明,该系统能够吸引司机的注意力,因为大多数司机都注意到了显示的警告。驾驶员与路线和连接的车辆的熟悉程度降低了减速时间;由于雄性往往具有更长的减速时间,性别也会产生重大影响,即更多的时间来舒适地刹车并允许行人通过。
translated by 谷歌翻译
Semi-supervised learning (SSL) has made significant strides in the field of remote sensing. Finding a large number of labeled datasets for SSL methods is uncommon, and manually labeling datasets is expensive and time-consuming. Furthermore, accurately identifying remote sensing satellite images is more complicated than it is for conventional images. Class-imbalanced datasets are another prevalent phenomenon, and models trained on these become biased towards the majority classes. This becomes a critical issue with an SSL model's subpar performance. We aim to address the issue of labeling unlabeled data and also solve the model bias problem due to imbalanced datasets while achieving better accuracy. To accomplish this, we create "artificial" labels and train a model to have reasonable accuracy. We iteratively redistribute the classes through resampling using a distribution alignment technique. We use a variety of class imbalanced satellite image datasets: EuroSAT, UCM, and WHU-RS19. On UCM balanced dataset, our method outperforms previous methods MSMatch and FixMatch by 1.21% and 0.6%, respectively. For imbalanced EuroSAT, our method outperforms MSMatch and FixMatch by 1.08% and 1%, respectively. Our approach significantly lessens the requirement for labeled data, consistently outperforms alternative approaches, and resolves the issue of model bias caused by class imbalance in datasets.
translated by 谷歌翻译
The task of locating and classifying different types of vehicles has become a vital element in numerous applications of automation and intelligent systems ranging from traffic surveillance to vehicle identification and many more. In recent times, Deep Learning models have been dominating the field of vehicle detection. Yet, Bangladeshi vehicle detection has remained a relatively unexplored area. One of the main goals of vehicle detection is its real-time application, where `You Only Look Once' (YOLO) models have proven to be the most effective architecture. In this work, intending to find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh, we have conducted a performance analysis of different variants of the YOLO-based architectures such as YOLOV3, YOLOV5s, and YOLOV5x. The models were trained on a dataset containing 7390 images belonging to 21 types of vehicles comprising samples from the DhakaAI dataset, the Poribohon-BD dataset, and our self-collected images. After thorough quantitative and qualitative analysis, we found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
translated by 谷歌翻译
Handwriting Recognition has been a field of great interest in the Artificial Intelligence domain. Due to its broad use cases in real life, research has been conducted widely on it. Prominent work has been done in this field focusing mainly on Latin characters. However, the domain of Arabic handwritten character recognition is still relatively unexplored. The inherent cursive nature of the Arabic characters and variations in writing styles across individuals makes the task even more challenging. We identified some probable reasons behind this and proposed a lightweight Convolutional Neural Network-based architecture for recognizing Arabic characters and digits. The proposed pipeline consists of a total of 18 layers containing four layers each for convolution, pooling, batch normalization, dropout, and finally one Global average pooling and a Dense layer. Furthermore, we thoroughly investigated the different choices of hyperparameters such as the choice of the optimizer, kernel initializer, activation function, etc. Evaluating the proposed architecture on the publicly available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic handwritten digits Database (MadBase)' datasets, the proposed model respectively achieved an accuracy of 96.93% and 99.35% which is comparable to the state-of-the-art and makes it a suitable solution for real-life end-level applications.
translated by 谷歌翻译
Cartoons are an important part of our entertainment culture. Though drawing a cartoon is not for everyone, creating it using an arrangement of basic geometric primitives that approximates that character is a fairly frequent technique in art. The key motivation behind this technique is that human bodies - as well as cartoon figures - can be split down into various basic geometric primitives. Numerous tutorials are available that demonstrate how to draw figures using an appropriate arrangement of fundamental shapes, thus assisting us in creating cartoon characters. This technique is very beneficial for children in terms of teaching them how to draw cartoons. In this paper, we develop a tool - shape2toon - that aims to automate this approach by utilizing a generative adversarial network which combines geometric primitives (i.e. circles) and generate a cartoon figure (i.e. Mickey Mouse) depending on the given approximation. For this purpose, we created a dataset of geometrically represented cartoon characters. We apply an image-to-image translation technique on our dataset and report the results in this paper. The experimental results show that our system can generate cartoon characters from input layout of geometric shapes. In addition, we demonstrate a web-based tool as a practical implication of our work.
translated by 谷歌翻译
The cover is the face of a book and is a point of attraction for the readers. Designing book covers is an essential task in the publishing industry. One of the main challenges in creating a book cover is representing the theme of the book's content in a single image. In this research, we explore ways to produce a book cover using artificial intelligence based on the fact that there exists a relationship between the summary of the book and its cover. Our key motivation is the application of text-to-image synthesis methods to generate images from given text or captions. We explore several existing text-to-image conversion techniques for this purpose and propose an approach to exploit these frameworks for producing book covers from provided summaries. We construct a dataset of English books that contains a large number of samples of summaries of existing books and their cover images. In this paper, we describe our approach to collecting, organizing, and pre-processing the dataset to use it for training models. We apply different text-to-image synthesis techniques to generate book covers from the summary and exhibit the results in this paper.
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
异常值是一个事件或观察,其被定义为不同于距群体的不规则距离的异常活动,入侵或可疑数据点。然而,异常事件的定义是主观的,取决于应用程序和域(能量,健康,无线网络等)。重要的是要尽可能仔细地检测异常事件,以避免基础设施故障,因为异常事件可能导致对基础设施的严重损坏。例如,诸如微电网的网络物理系统的攻击可以发起电压或频率不稳定性,从而损坏涉及非常昂贵的修复的智能逆变器。微电网中的不寻常活动可以是机械故障,行为在系统中发生变化,人体或仪器错误或恶意攻击。因此,由于其可变性,异常值检测(OD)是一个不断增长的研究领域。在本章中,我们讨论了使用AI技术的OD方法的进展。为此,通过多个类别引入每个OD模型的基本概念。广泛的OD方法分为六大类:基于统计,基于距离,基于密度的,基于群集的,基于学习的和合奏方法。对于每个类别,我们讨论最近最先进的方法,他们的应用领域和表演。之后,关于对未来研究方向的建议提供了关于各种技术的优缺点和挑战的简要讨论。该调查旨在指导读者更好地了解OD方法的最新进展,以便保证AI。
translated by 谷歌翻译
衡量全球经济均衡的定量指标与农业供应链和国际贸易流量具有强大而相互依存的关系。这些过程中的突然震动由贸易战争,流行病或天气等异常事件造成的,可能对全球经济具有复杂影响。在本文中,我们提出了一种新颖的框架,即:Depeag,采用经济学,使用深度学习(DL)来测量异常事件检测的影响,以确定普通财务指数(如Dowjones)之间的关系,以及生产价值农产品(如奶酪和牛奶)。我们使用称为长期内存(LSTM)网络的DL技术成功地预测商品生产,高精度,也是五个流行的模型(回归和提升)作为基准,以测量异常事件的影响。结果表明,具有异常值的考虑因素(使用隔离林)优于基线模型的Depeag,以及具有异常值检测的相同模型。在预测财务指标预测商品生产时,异常事件会产生相当大的影响。此外,我们展示了Deepag对公共政策的影响,为政策制定者和农民提供了洞察力,以及农业生态系统的运作决策。收集数据,模型开发,并记录和呈现结果。
translated by 谷歌翻译