kronecker回归是一个高度结构的最小二乘问题$ \ min _ {\ mathbf {x}}} \ lvert \ mathbf {k} \ mathbf {x} - \ mathbf {b} \ rvert_ \ rvert_ {2}^2 $矩阵$ \ mathbf {k} = \ mathbf {a}^{(1)} \ otimes \ cdots \ cdots \ otimes \ mathbf {a}^{(n)} $是因子矩阵的Kronecker产品。这种回归问题是在广泛使用的最小二乘(ALS)算法的每个步骤中都出现的,用于计算张量的塔克分解。我们介绍了第一个用于求解Kronecker回归的子次数算法,以避免在运行时间中避免指数项$ o(\ varepsilon^{ - n})$的$(1+ \ varepsilon)$。我们的技术结合了利用分数抽样和迭代方法。通过扩展我们对一个块是Kronecker产品的块设计矩阵的方法,我们还实现了(1)Kronecker Ridge回归的亚次级时间算法,并且(2)更新ALS中Tucker分解的因子矩阵,这不是一个不是一个纯Kronecker回归问题,从而改善了Tucker ALS的所有步骤的运行时间。我们证明了该Kronecker回归算法在合成数据和现实世界图像张量上的速度和准确性。
translated by 谷歌翻译
我们研究社会上公平$(\ ell_p,k)$的近似算法 - $ m $组的聚类问题,其特殊案例包括社会公平的$ k $ -Median($ p = 1 $)和社会公平的$ k $ - 均值($ p = 2 $)问题。我们提出(1)一个多项式时间$(5+2 \ sqrt {6})^p $ - approximation,最多$ k+m $中心(2)a $(5+2 \ sqrt {6}+\ \ \ \ \ \ \ \ \ \ \ \ \ \\ epsilon)^p $ - approximation with $ k $中心$ n^{2^{o(p)} \ cdot m^2} $,和(3)a $(15+6 \ sqrt {6}) ^p $ k $中心的时间$ k^{m} \ cdot \ text {poly}(n)$。第一个结果是通过使用一系列线性程序的迭代圆形方法的细化来获得的。后两个结果是通过将最多$ K+M $中心的解决方案转换为使用(2)的稀疏方法的$ K $中心的解决方案,并通过详尽的搜索(3)。我们还将算法的性能与现有的双色算法以及基准数据集中的$ K $中心近似算法的恰好比较,并发现我们的算法在实践中也优于现有方法。
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives in the ensuing years. Many governments and health officials failed to arrest the rapid circulation of infection in their communities. The long incubation period and the large proportion of asymptomatic cases made COVID-19 particularly elusive to track. However, wastewater monitoring soon became a promising data source in addition to conventional indicators such as confirmed daily cases, hospitalizations, and deaths. Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting. This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and one Temporal Fusion Transformer (TFT) model to build a global forecasting model. We supplement the daily confirmed cases with viral loads and other socio-economic factors as covariates to the models. Our results suggest that TFT outperforms DeepTCN and learns a better association between viral load and daily cases. We demonstrated that equipping the models with the viral load improves their forecasting performance significantly. Moreover, viral load is shown to be the second most predictive input, following the containment and health index. Our results reveal the feasibility of training a location-agnostic deep-learning model to capture the dynamics of infection diffusion when wastewater viral load data is provided.
translated by 谷歌翻译
Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) assesses genome-wide chromatin accessibility in thousands of cells to reveal regulatory landscapes in high resolutions. However, the analysis presents challenges due to the high dimensionality and sparsity of the data. Several methods have been developed, including transformation techniques of term-frequency inverse-document frequency (TF-IDF), dimension reduction methods such as singular value decomposition (SVD), factor analysis, and autoencoders. Yet, a comprehensive study on the mentioned methods has not been fully performed. It is not clear what is the best practice when analyzing scATAC-seq data. We compared several scenarios for transformation and dimension reduction as well as the SVD-based feature analysis to investigate potential enhancements in scATAC-seq information retrieval. Additionally, we investigate if autoencoders benefit from the TF-IDF transformation. Our results reveal that the TF-IDF transformation generally leads to improved clustering and biologically relevant feature extraction.
translated by 谷歌翻译
This work concerns developing communication- and computation-efficient methods for large-scale multiple testing over networks, which is of interest to many practical applications. We take an asymptotic approach and propose two methods, proportion-matching and greedy aggregation, tailored to distributed settings. The proportion-matching method achieves the global BH performance yet only requires a one-shot communication of the (estimated) proportion of true null hypotheses as well as the number of p-values at each node. By focusing on the asymptotic optimal power, we go beyond the BH procedure by providing an explicit characterization of the asymptotic optimal solution. This leads to the greedy aggregation method that effectively approximate the optimal rejection regions at each node, while computation-efficiency comes from the greedy-type approach naturally. Extensive numerical results over a variety of challenging settings are provided to support our theoretical findings.
translated by 谷歌翻译
当网络条件恶化时,视频会议系统的用户体验差,因为当前的视频编解码器根本无法在极低的比特率下运行。最近,已经提出了几种神经替代方案,可以使用每个框架的稀疏表示,例如面部地标信息,以非常低的比特率重建说话的头视频。但是,这些方法在通话过程中具有重大运动或遮挡的情况下会产生不良的重建,并且不会扩展到更高的分辨率。我们设计了Gemino,这是一种基于新型高频条件超分辨率管道的新型神经压缩系统,用于视频会议。 Gemino根据从单个高分辨率参考图像中提取的信息来增强高频细节(例如,皮肤纹理,头发等),为每个目标框架的一个非常低分辨率的版本(例如,皮肤纹理,头发等)。我们使用多尺度体系结构,该体系结构在不同的分辨率下运行模型的不同组件,从而使其扩展到可与720p相当的分辨率,并且我们个性化模型以学习每个人的特定细节,在低比特率上实现了更好的保真度。我们在AIORTC上实施了Gemino,这是WEBRTC的开源Python实现,并表明它在A100 GPU上实时在1024x1024视频上运行,比比特率的比特率低于传统的视频Codecs,以相同的感知质量。
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
牙齿分割是牙科修复体中的一个重要主题,这对于牙冠的产生,诊断和治疗计划至关重要。在牙科字段中,输入数据的可变性很高,没有公开可用的3D牙科拱门数据集。尽管最近对3D数据的深度学习体系结构提供的领域有所改善,但仍然存在一些问题,例如正确识别拱门中缺失的牙齿。我们建议将光谱聚类用作自我探测信号,以将3D拱门分割的联合训练神经网络进行分割。我们的方法是通过观察到的,即K-均值聚类提供了捕获与人类感知相关的边缘线的线索。主要思想是通过将未标记的3D拱门分解为仅依靠几何信息的细分市场来自动生成训练数据。然后,使用关节损失对网络进行训练,该联合损失结合了注释输入的监督损失和无标签输入的自制损失。我们收集的数据有多种拱门,包括牙齿缺失的拱门。我们的实验结果表明,在使用半监督学习时,对完全监督的最先进的meshsegnet进行了改善。最后,我们贡献代码和数据集。
translated by 谷歌翻译
近年来,人们对使用电子病历(EMR)进行次要目的特别感兴趣,以增强医疗保健提供的质量和安全性。 EMR倾向于包含大量有价值的临床笔记。学习嵌入是一种将笔记转换为使其可比性的格式的方法。基于变压器的表示模型最近取得了巨大的飞跃。这些模型在大型在线数据集上进行了预训练,以有效地了解自然语言文本。学习嵌入的质量受临床注释如何用作表示模型的输入的影响。临床注释有几个部分具有不同水平的信息价值。医疗保健提供者通常使用不同的表达方式来实现同一概念也很常见。现有方法直接使用临床注释或初始预处理作为表示模型的输入。但是,要学习良好的嵌入,我们确定了最重要的临床笔记部分。然后,我们将提取的概念从选定部分映射到统一医学语言系统(UMLS)中的标准名称。我们使用与唯一概念相对应的标准短语作为临床模型的输入。我们进行了实验,以测量在公共可用的医疗信息集市(MIMIC-III)数据集的子集中,在医院死亡率预测的任务中,学到的嵌入向量的实用性。根据实验,与其他输入格式相比,基于临床变压器的表示模型通过提取的独特概念的标准名称产生的输入产生了更好的结果。表现最好的模型分别是Biobert,PubMedbert和Umlsbert。
translated by 谷歌翻译