通过准确,及时的流量预测,可以预先预测受影响的交通状况,以指导机构和居民适当地应对交通模式的变化。但是,例如,关于交通预测的现有作品主要依赖于仅在1小时以下的短期预测的历史流量模式。为了更好地管理未来的道路能力并适应社会和人类的影响,提出一个灵活而全面的框架以预测公共用户和运输机构的长期交通状况至关重要。在本文中,考虑到社交媒体的功能,弥合了强大的长期交通预测的差距。首先实施了相关研究和线性回归模型,以评估两个时间序列数据,流量强度和Twitter数据强度之间的相关性的重要性。然后将两个时间序列数据提供给我们提出的社会意识框架,即交通扭转变压器,该框架将大自然语言表示形式集成到时间序列记录中以进行长期流量预测。大西雅图地区的实验结果表明,我们提出的模型在所有评估矩阵中都优于基线模型。这个由NLP加入的社会感知框架可以成为交通代理机构的网络交通预测和管理的宝贵实现。
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
A household robot should be able to navigate to target locations without requiring users to first annotate everything in their home. Current approaches to this object navigation challenge do not test on real robots and rely on expensive semantically labeled 3D meshes. In this work, our aim is an agent that builds self-supervised models of the world via exploration, the same as a child might. We propose an end-to-end self-supervised embodied agent that leverages exploration to train a semantic segmentation model of 3D objects, and uses those representations to learn an object navigation policy purely from self-labeled 3D meshes. The key insight is that embodied agents can leverage location consistency as a supervision signal - collecting images from different views/angles and applying contrastive learning to fine-tune a semantic segmentation model. In our experiments, we observe that our framework performs better than other self-supervised baselines and competitively with supervised baselines, in both simulation and when deployed in real houses.
translated by 谷歌翻译
Objective: Evictions are involved in a cascade of negative events that can lead to unemployment, homelessness, long-term poverty, and mental health problems. In this study, we developed a natural language processing system to automatically detect eviction incidences and their attributes from electronic health record (EHR) notes. Materials and Methods: We annotated eviction status in 5000 EHR notes from the Veterans Health Administration. We developed a novel model, called Knowledge Injection based on Ripple Effects of Social and Behavioral Determinants of Health (KIRESH), that has shown to substantially outperform other state-of-the-art models such as fine-tuning pre-trained language models like BioBERT and Bio_ClinicalBERT. Moreover, we designed a prompt to further improve the model performance by using the intrinsic connection between the two sub-tasks of eviction presence and period prediction. Finally, we used the Temperature Scaling-based Calibration on our KIRESH-Prompt method to avoid over-confidence issues arising from the imbalance dataset. Results: KIRESH-Prompt achieved a Macro-F1 of 0.6273 (presence) and 0.7115 (period), which was significantly higher than 0.5382 (presence) and 0.67167 (period) for just fine-tuning Bio_ClinicalBERT model. Conclusion and Future Work: KIRESH-Prompt has substantially improved eviction status classification. In future work, we will evaluate the generalizability of the model framework to other applications.
translated by 谷歌翻译
The success of AlphaZero (AZ) has demonstrated that neural-network-based Go AIs can surpass human performance by a large margin. Given that the state space of Go is extremely large and a human player can play the game from any legal state, we ask whether adversarial states exist for Go AIs that may lead them to play surprisingly wrong actions. In this paper, we first extend the concept of adversarial examples to the game of Go: we generate perturbed states that are ``semantically'' equivalent to the original state by adding meaningless moves to the game, and an adversarial state is a perturbed state leading to an undoubtedly inferior action that is obvious even for Go beginners. However, searching the adversarial state is challenging due to the large, discrete, and non-differentiable search space. To tackle this challenge, we develop the first adversarial attack on Go AIs that can efficiently search for adversarial states by strategically reducing the search space. This method can also be extended to other board games such as NoGo. Experimentally, we show that the actions taken by both Policy-Value neural network (PV-NN) and Monte Carlo tree search (MCTS) can be misled by adding one or two meaningless stones; for example, on 58\% of the AlphaGo Zero self-play games, our method can make the widely used KataGo agent with 50 simulations of MCTS plays a losing action by adding two meaningless stones. We additionally evaluated the adversarial examples found by our algorithm with amateur human Go players and 90\% of examples indeed lead the Go agent to play an obviously inferior action. Our code is available at \url{https://PaperCode.cc/GoAttack}.
translated by 谷歌翻译
个性化移动代理中的感知系统需要开发室内场景理解模型,这些模型可以理解3D几何,捕获客观性,分析人类行为等。但是,与户外环境的模型相比,该方向并未得到充分探索(例如自动驾驶系统,包括行人预测,汽车检测,交通标志识别等)。在本文中,我们首先讨论主要挑战:不足,甚至没有标记为现实世界室内环境的数据,以及其他挑战,例如异质信息来源(例如RGB图像和LIDAR点云)之间的融合,建模关系建模关系在各种输出集(例如3D对象位置,深度估计和人类姿势)和计算效率之间。然后,我们描述MMISM(多模式输入多任务输出室内场景理解模型)来应对上述挑战。 MMISM认为RGB图像以及稀疏的LIDAR点是输入和3D对象检测,深度完成,人体姿势估计和语义分割作为输出任务。我们表明,MMISM在PAR上执行甚至比单任务模型更好。例如,我们在基准Arkitscenes数据集上将基线3D对象检测结果提高了11.7%。
translated by 谷歌翻译
KI-67是一种核蛋白,可以在细胞增殖过程中产生。 Ki67指数在几种癌症中是有价值的预后变量。在乳腺癌中,该指数甚至经常检查许多患者。目前,病理学家使用免疫组织化学方法将KI-67阳性恶性细胞的百分比视为KI-67指数。较高的分数通常意味着更具侵略性的肿瘤行为。在临床实践中,KI-67指数的测量取决于视觉识别方法和手动计数。然而,视觉和手动评估方法是时间耗费,由于评估标准不同或评估中的肿瘤面积有限,因此可重复性差。在这里,我们使用数字图像处理技术,包括图像二进制和图像形态操作来创建数字图像分析方法来解释KI-67索引。然后,将10个乳腺癌标本用作高精度的验证(相关效率r = 0.95127)。借助数字图像分析,病理学家可以更有效地解释KI67指数,并具有出色的可重复性。
translated by 谷歌翻译
新颖的对象字幕(NOC)旨在描述包含对象的图像,而无需在训练过程中观察其地面真相标题。由于缺乏字幕注释,无法通过序列到序列训练或苹果酒优化直接优化字幕模型。结果,我们提出了启用释义(P2C),这是一个针对NOC的两阶段学习框架,它将通过释义通过释义来优化输出字幕。使用P2C,字幕模型首先从仅在文本语料库中预先训练的语言模型中学习释义,从而扩展了Bank一词以提高语言流利度。为了进一步实施足够描述输入图像的视觉内容的输出字幕,我们对引入的忠诚度和充分性目标进行字幕模型执行自我贴形。由于在训练过程中没有任何地面真相标题可用于新颖的对象图像,因此我们的P2C利用交叉模式(图像文本)关联模块可以确保可以正确保留上述字幕特征。在实验中,我们不仅表明我们的P2C在NOCAPS和COCO字幕数据集上实现了最先进的性能,而且还通过替换NOC的语言和跨模式关联模型来验证学习框架的有效性和灵活性。实施详细信息和代码可在补充材料中找到。
translated by 谷歌翻译