本文是我们尝试回答两个问题,涵盖道德和作者资格分析领域的问题。首先,由于用于执行作者身份分析的方法意味着他或她创建的内容可以识别作者,因此我们有兴趣找出作者身份证系统是否有可能正确地将作者归因于作者,如果年来,他们经历了重大的心理过渡。其次,从作者的道德价值观演变的角度来看,我们检查了如果作者归因系统在检测单个作者身份方面遇到困难,这将是什么意思。我们着手使用基于预训练的变压器模型的文本分类器执行二进制作者资格分析任务来回答这些问题,并依靠常规相似性指标来回答这些问题。对于测试套装,我们选择了教育史上的日本教育家和专家Arata Osada的作品,其中一半是在第二次世界大战之前写的书,在1950年代又是一半,在此期间,他进行了转变。政治意见的条款。结果,我们能够确认,在10年以上的时间跨度中,Arata Osada撰写的文本,而分类准确性下降了很大的利润率,并且大大低于其他非虚构的文本作家,预测的信心得分仍然与时间跨度较短的水平相似,这表明分类器在许多情况下被欺骗来决定在多年的时间跨度上写的文本实际上是由两个不同的人编写的,这反过来又使我们相信这种变化会影响作者身份分析,并且历史事件对人的著作中所表达的道德观。
translated by 谷歌翻译
我们使用不同的语言支持特征预处理方法研究特征密度(FD)的有效性,以估计数据集复杂性,这又用于比较估计任何训练之前机器学习(ML)分类器的潜在性能。我们假设估计数据集复杂性允许减少所需实验迭代的数量。这样我们可以优化ML模型的资源密集型培训,这是由于可用数据集大小的增加以及基于深神经网络(DNN)的模型的不断增加的普及而成为一个严重问题。由于训练大规模ML模型引起的令人惊叹的二氧化碳排放量,不断增加对更强大的计算资源需求的问题也在影响环境。该研究是在多个数据集中进行的,包括流行的数据集,例如用于培训典型情感分析模型的Yelp业务审查数据集,以及最近的数据集尝试解决网络欺凌问题,这是一个严重的社会问题,也是一个严重的社会问题一个更复杂的问题,形成了语言代表的观点。我们使用收集多种语言的网络欺凌数据集,即英语,日语和波兰语。数据集的语言复杂性的差异允许我们另外讨论语言备份的单词预处理的功效。
translated by 谷歌翻译
Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles and robots. Existing approaches to detect OOD samples treat a DNN as a black box and assess the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNN are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU based architectures. The proposed method does not introduce high computational workload due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets. ion.
translated by 谷歌翻译
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn $\epsilon$-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound $\mathcal{O}(H(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ on the required number of realizations to learn these strategies with high probability, where $H$ is the length of the game, $A_{\mathcal{X}}$ and $B_{\mathcal{Y}}$ are the total number of actions for the two players. We also propose two Follow the Regularize leader (FTRL) algorithms for this setting: Balanced-FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive-FTRL which needs $\mathcal{O}(H^2(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ plays without this requirement by progressively adapting the regularization to the observations.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over $10,000$ unique articles from almost $60$ Czech online news sources. These are categorized into one of the $4$ classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of $0.52$. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
translated by 谷歌翻译
Artificial intelligence (AI) technologies revolutionize vast fields of society. Humans using these systems are likely to expect them to work in a potentially hyperrational manner. However, in this study, we show that some AI systems, namely large language models (LLMs), exhibit behavior that strikingly resembles human-like intuition - and the many cognitive errors that come with them. We use a state-of-the-art LLM, namely the latest iteration of OpenAI's Generative Pre-trained Transformer (GPT-3.5), and probe it with the Cognitive Reflection Test (CRT) as well as semantic illusions that were originally designed to investigate intuitive decision-making in humans. Our results show that GPT-3.5 systematically exhibits "machine intuition," meaning that it produces incorrect responses that are surprisingly equal to how humans respond to the CRT as well as to semantic illusions. We investigate several approaches to test how sturdy GPT-3.5's inclination for intuitive-like decision-making is. Our study demonstrates that investigating LLMs with methods from cognitive science has the potential to reveal emergent traits and adjust expectations regarding their machine behavior.
translated by 谷歌翻译
Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.
translated by 谷歌翻译
Human behavior understanding requires looking at minute details in the large context of a scene containing multiple input modalities. It is necessary as it allows the design of more human-like machines. While transformer approaches have shown great improvements, they face multiple challenges such as lack of data or background noise. To tackle these, we introduce the Forced Attention (FAt) Transformer which utilize forced attention with a modified backbone for input encoding and a use of additional inputs. In addition to improving the performance on different tasks and inputs, the modification requires less time and memory resources. We provide a model for a generalised feature extraction for tasks concerning social signals and behavior analysis. Our focus is on understanding behavior in videos where people are interacting with each other or talking into the camera which simulates the first person point of view in social interaction. FAt Transformers are applied to two downstream tasks: personality recognition and body language recognition. We achieve state-of-the-art results for Udiva v0.5, First Impressions v2 and MPII Group Interaction datasets. We further provide an extensive ablation study of the proposed architecture.
translated by 谷歌翻译
We study the learning dynamics of self-predictive learning for reinforcement learning, a family of algorithms that learn representations by minimizing the prediction error of their own future latent representations. Despite its recent empirical success, such algorithms have an apparent defect: trivial representations (such as constants) minimize the prediction error, yet it is obviously undesirable to converge to such solutions. Our central insight is that careful designs of the optimization dynamics are critical to learning meaningful representations. We identify that a faster paced optimization of the predictor and semi-gradient updates on the representation, are crucial to preventing the representation collapse. Then in an idealized setup, we show self-predictive learning dynamics carries out spectral decomposition on the state transition matrix, effectively capturing information of the transition dynamics. Building on the theoretical insights, we propose bidirectional self-predictive learning, a novel self-predictive algorithm that learns two representations simultaneously. We examine the robustness of our theoretical insights with a number of small-scale experiments and showcase the promise of the novel representation learning algorithm with large-scale experiments.
translated by 谷歌翻译