The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Script event prediction aims to predict the subsequent event given the context. This requires the capability to infer the correlations between events. Recent works have attempted to improve event correlation reasoning by using pretrained language models and incorporating external knowledge~(e.g., discourse relations). Though promising results have been achieved, some challenges still remain. First, the pretrained language models adopted by current works ignore event-level knowledge, resulting in an inability to capture the correlations between events well. Second, modeling correlations between events with discourse relations is limited because it can only capture explicit correlations between events with discourse markers, and cannot capture many implicit correlations. To this end, we propose a novel generative approach for this task, in which a pretrained language model is fine-tuned with an event-centric pretraining objective and predicts the next event within a generative paradigm. Specifically, we first introduce a novel event-level blank infilling strategy as the learning objective to inject event-level knowledge into the pretrained language model, and then design a likelihood-based contrastive loss for fine-tuning the generative model. Instead of using an additional prediction layer, we perform prediction by using sequence likelihoods generated by the generative model. Our approach models correlations between events in a soft way without any external knowledge. The likelihood-based prediction eliminates the need to use additional networks to make predictions and is somewhat interpretable since it scores each word in the event. Experimental results on the multi-choice narrative cloze~(MCNC) task demonstrate that our approach achieves better results than other state-of-the-art baselines. Our code will be available at \url{https://github.com/zhufq00/mcnc}.
translated by 谷歌翻译
数据驱动的预测方法可以有效,准确地将蛋白质序列转化为生物活性结构,对于科学研究和治疗发展非常有价值。使用共同进化信息确定准确的折叠格局是现代蛋白质结构预测方法的成功基础。作为最新的状态,AlphaFold2显着提高了准确性,而无需进行明确的共同进化分析。然而,其性能仍然显示出对可用序列同源物的强烈依赖。我们研究了这种依赖性的原因,并提出了一种元生成模型Evogen,以弥补较差的MSA靶标的Alphafold2的表现不佳。 Evogen使我们能够通过降低搜索的MSA或生成虚拟MSA来操纵折叠景观,并帮助Alphafold2在低数据表方面准确地折叠,甚至通过单序预测来实现令人鼓舞的性能。能够用很少的MSA做出准确的预测,不仅可以更好地概括为孤儿序列的Alphafold2,而且使其在高通量应用程序中的使用民主化。此外,Evogen与AlphaFold2结合产生了一种概率结构生成方法,该方法可以探索蛋白质序列的替代构象,并且序列生成的任务意识可区分算法将使包括蛋白质设计在内的其他相关任务受益。
translated by 谷歌翻译
蛋白质是人类生命的重要组成部分,其结构对于功能和机制分析很重要。最近的工作表明了AI驱动方法对蛋白质结构预测的潜力。但是,新模型的开发受到数据集和基准测试培训程序的限制。据我们所知,现有的开源数据集远不足以满足现代蛋白质序列相关研究的需求。为了解决这个问题,我们介绍了具有高覆盖率和多样性的第一个百万级蛋白质结构预测数据集,称为PSP。该数据集由570K真实结构序列(10TB)和745K互补蒸馏序列(15TB)组成。此外,我们还提供了该数据集上SOTA蛋白结构预测模型的基准测试训练程序。我们通过参与客串比赛验证该数据集的实用程序进行培训,我们的模特赢得了第一名。我们希望我们的PSP数据集以及培训基准能够为AI驱动的蛋白质相关研究提供更广泛的AI/生物学研究人员社区。
translated by 谷歌翻译
深度神经网络的成功在很大程度上取决于大量高质量注释的数据的可用性,但是这些数据很难或昂贵。由此产生的标签可能是类别不平衡,嘈杂或人类偏见。从不完美注释的数据集中学习无偏分类模型是一项挑战,我们通常会遭受过度拟合或不足的折磨。在这项工作中,我们彻底研究了流行的软马克斯损失和基于保证金的损失,并提供了一种可行的方法来加强通过最大化最小样本余量来限制的概括误差。我们为此目的进一步得出了最佳条件,该条件指示了类原型应锚定的方式。通过理论分析的激励,我们提出了一种简单但有效的方法,即原型锚定学习(PAL),可以轻松地将其纳入各种基于学习的分类方案中以处理不完美的注释。我们通过对合成和现实世界数据集进行广泛的实验来验证PAL对班级不平衡学习和降低噪声学习的有效性。
translated by 谷歌翻译
由于推荐系统(RS)在指导客户进行购买中的关键作用,因此有自然的动力,不道德的政党为利润做出欺骗。在本文中,我们研究了先令攻击,在该攻击中,对抗方为不适当的目的注入了许多假用户配置文件。常规的先令攻击方法缺乏攻击性转移性(即,攻击对某些受害者RS模型无效)和/或攻击隐形性(即,很容易检测到注射的配置文件)。为了克服这些问题,我们提出了基于生成对抗网络的新型攻击模型。 Leg-Up从采样``模板''中从真实用户那里学习用户行为模式,并构建了伪造的用户配置文件。为了模拟真实的用户,Lige-Up中的发电机直接输出离散评级。为了增强攻击传递性,通过在替代RS模型上最大化攻击性能来优化生成器的参数。为了提高攻击的隐形性,Leg-Up采用歧视器来指导发电机生成无法检测到的假用户配置文件。基准测试的实验表明,在广泛的受害者RS模型上,腿部超过了最先进的先令攻击方法。我们工作的源代码可在以下网址提供:https://github.com/xmudm/shillingattack。
translated by 谷歌翻译
现实世界中的电子健康记录(EHR)通常会受到高丢失数据率的困扰。例如,在我们的EHR中,对于某些功能,缺失率可能高达90%,所有功能的平均缺失率约为70%。我们提出了一种时间感知的双交叉访问的缺失价值插补方法,称为ta-dualCV,该方法自发利用跨特征和纵向依赖性的多元依赖性在EHRS中从有限的可观察记录中提取的信息。具体而言,ta-dualCV捕获了不同特征测量值的缺失模式的潜在结构,它还考虑了时间连续性,并根据时间步长和不规则的时间间隔捕获了潜在的时间缺失模式。使用三种类型的任务使用三个大型现实世界EHR评估TA-DUALCV:无监督的选级任务,通过更改掩盖率高达90%的掩码率和使用长期短期记忆(LSTM)进行监督的24小时早期预测对化粪池休克的早期预测(LSTM) 。我们的结果表明,TA-DUALCV在两种任务上的所有现有最先进的归纳基线(例如底特律和驯服)的表现明显好。
translated by 谷歌翻译
Jaccard索引,也称为交叉联盟(iou),是图像语义分段中最关键的评估度量之一。然而,由于学习目的既不可分解也不是可分解的,则iou得分的直接优化是非常困难的。虽然已经提出了一些算法来优化其代理,但没有提供泛化能力的保证。在本文中,我们提出了一种边缘校准方法,可以直接用作学习目标,在数据分布上改善IOO的推广,通过刚性下限为基础。本方案理论上,根据IOU分数来确保更好的分割性能。我们评估了在七个图像数据集中所提出的边缘校准方法的有效性,显示使用深度分割模型的其他学习目标的IOU分数大量改进。
translated by 谷歌翻译
近年来,基于深度卷积神经网络(CNN)的细分方法已为许多医学分析任务做出了最先进的成就。但是,这些方法中的大多数通过优化结构或添加U-NET的新功能模块来改善性能,从而忽略了粗粒和细粒的语义信息的互补和融合。为了解决上述问题,我们提出了一个称为渐进学习网络​​(PL-NET)的医学图像分割框架,其中包括内部渐进式学习(IPL)和外部渐进学习(EPL)。 PL-NET具有以下优点:(1)IPL将特征提取为两个“步骤”,它们可以混合不同尺寸的接收场并捕获从粗粒度到细粒度的语义信息,而无需引入其他参数; (2)EPL将训练过程分为两个“阶段”以优化参数,并在上一阶段中实现粗粒信息的融合,并在后期阶段进行细粒度。我们在不同的医学图像分析任务中评估了我们的方法,结果表明,PL-NET的分割性能优于U-NET及其变体的最新方法。
translated by 谷歌翻译
有条件的生成对抗网络(CGANs)将标准无条件GaN框架扩展到学习样本的联合数据标签分布,并已建立为能够产生高保真图像的强大生成模型。这种模型的训练挑战在于将课程信息恰当地注入到其发电机和鉴别器中。对于鉴别器,可以通过(1)直接将标签作为输入或(2)涉及辅助分类损失的标签来实现类调节。在本文中,我们表明前者直接对齐类条件的假和实际数据分布$ p(\ text {image} | \ text {class})$({\ EM数据匹配}),而后者对齐数据调节类分布$ p(\ text {class} | \ text {image})$({\ EM标签匹配})。虽然类别可分离性并不直接转化为样本质量,并且如果分类本身是本质上困难的话,如果不同类别的特征映射到同一点,则不能为发电机提供有用的指导,因此可以为同一点映射并因此变得不可分割。通过这种直觉激励,我们提出了一种双重投影GaN(P2Gan)模型,它学会在{\ EM数据匹配}和{\ EM标签匹配}之间平衡。然后,我们提出了一种改进的Cgan模型,通过辅助分类,通过最大限度地减少$ F $ -divergence,通过辅助分类直接对准假和实际条件$ p(\ text {class} | \ text {image})$。高斯(MOG)数据集的合成混合物和各种现实世界数据集的实验,包括CIFAR100,ImageNet和Vggface2,证明了我们所提出的模型的功效。
translated by 谷歌翻译