将触觉反馈从指尖转移到手腕上的重新定位被认为是使与混合现实虚拟环境的触觉相互作用的一种方式,同时使手指免费完成其他任务。我们介绍了一对腕触觉触觉设备以及一个虚拟环境,以研究手指和触觉者之间的各种映射如何影响任务性能。腕部呈现的触觉反馈反映了由食指和拇指控制的虚拟物体和虚拟化头像之间发生的相互作用。我们进行了一项用户研究,比较了四个不同的手指触觉反馈映射和一个无反馈条件作为对照。我们评估了用户通过任务完成时间的指标,手指和虚拟立方体的路径长度以及在指尖处的正常和剪切力的大小来评估了用户执行简单的选择任务的能力。我们发现多次映射是有效的,并且当视觉提示受到限制时会产生更大的影响。我们讨论了方法的局限性,并描述了朝着腕部磨损设备进行多重自由度触觉渲染的下一步步骤,以改善虚拟环境中的任务性能。
translated by 谷歌翻译
关于对比学习的最新研究仅通过在医学图像分割的背景下利用很少的标签来实现出色的性能。现有方法主要关注实例歧视和不变映射。但是,他们面临三个常见的陷阱:(1)尾巴:医疗图像数据通常遵循隐式的长尾分配。盲目利用训练中的所有像素会导致数据失衡问题,并导致性能恶化; (2)一致性:尚不清楚分割模型是否由于不同解剖学特征之间的类内变化而学会了有意义但一致的解剖学特征; (3)多样性:整个数据集中的切片内相关性已得到明显降低的关注。这促使我们寻求一种有原则的方法来战略利用数据集本身,以发现不同解剖学观点的类似但不同的样本。在本文中,我们介绍了一种新型的半监督医学图像分割框架,称其为您自己的解剖结构(MONA),并做出了三个贡献。首先,先前的工作认为,每个像素对模型培训都同样重要。我们从经验上观察到,仅此单单就不太可能定义有意义的解剖特征,这主要是由于缺乏监督信号。我们通过使用更强大的数据增强和最近的邻居展示了学习不变的两个简单解决方案。其次,我们构建了一组目标,鼓励模型能够以无监督的方式将医学图像分解为解剖特征的集合。最后,我们在具有不同标记设置的三个基准数据集上的广泛结果验证了我们提出的MONA的有效性,该数据在不同的标签设置下实现了新的最新设置。
translated by 谷歌翻译
开普勒和苔丝任务产生了超过100,000个潜在的传输信号,必须处理,以便创建行星候选的目录。在过去几年中,使用机器学习越来越感兴趣,以分析这些数据以寻找新的外延网。与现有的机器学习作品不同,exoMiner,建议的深度学习分类器在这项工作中,模仿域专家如何检查诊断测试以VET传输信号。 exoMiner是一种高度准确,可说明的和强大的分类器,其中1)允许我们验证来自桅杆开口存档的301个新的外延网,而2)是足够的,足以应用于诸如正在进行的苔丝任务的任务中应用。我们进行了广泛的实验研究,以验证exoMiner在不同分类和排名指标方面比现有的传输信号分类器更可靠,准确。例如,对于固定精度值为99%,exoMiner检索测试集中的93.6%的所有外产网(即,召回= 0.936),而最佳现有分类器的速率为76.3%。此外,exoMiner的模块化设计有利于其解释性。我们介绍了一个简单的解释性框架,提供了具有反馈的专家,为什么exoMiner将运输信号分类为特定类标签(例如,行星候选人或不是行星候选人)。
translated by 谷歌翻译
通过最大化示例的不同转换“视图”之间的相似性来构建自我监督学习(SSL)构建表示的最先进的方法。然而,在用于创建视图的转换中没有足够的多样性,难以克服数据中的滋扰变量并构建丰富的表示。这激励了数据集本身来查找类似但不同的样本,以彼此的视图。在本文中,我们介绍了我自己的观点(MISOW),一种新的自我监督学习方法,在数据集中定义预测的不同目标。我们的方法背后的想法是主动挖掘观点,发现在网络的表示空间中的邻居中的样本,然后从一个样本的潜在表示,附近样本的表示。在展示计算机愿景中使用的基准测试中,我们突出了在神经科学的新应用中突出了这个想法的力量,其中SSL尚未应用。在测试多单元神经记录时,我们发现Myow在所有示例中表现出其他自我监督的方法(在某些情况下超过10%),并且经常超越监督的基线。通过MOSO,我们表明可以利用数据的多样性来构建丰富的观点,并在增强的新域中利用自我监督,其中包括有限或未知。
translated by 谷歌翻译