我们提出了Swiftagg+,这是一种针对联合学习系统的新颖的安全聚合协议,其中central Server汇总了$ n \ in \ mathbb {n} $分布式用户的本地型号,每个大小$ l \ in \ mathbb {n} $中的每个型号,训练有素,以隐私的方式在其本地数据上。 Swiftagg+可以大大减少通信开销,而不会对安全性进行任何妥协,并在减少差距内实现最佳通信负载。具体而言,最多有$ d = o(n)$ droput用户,Swiftagg+实现了$(1+ \ Mathcal {o}(\ frac {1} {n} {n}))的每个用户通信负载。和$(1+ \ Mathcal {o}(\ frac {1} {n}))的服务器通信负载,具有最差的信息理论安全保证o(n)$半honest用户,也可能与好奇的服务器合谋。此外,拟议的Swiftagg+允许在通信负载和主动通信链接的数量之间进行灵活的权衡。特别是,对于$ t <n-d $,对于任何$ k \ in \ mathbb {n} $,Swiftagg+可以实现$(1+ \ frac {t} {k} {k})l $符号的服务器通信负载,并且 - 用户通信负载最多$(1+ \ frac {t+d} {k})l $符号,其中网络中的配对活动连接的数量为$ \ frac {n} {2}(k +T+D+1)$。
translated by 谷歌翻译
使用分布式学习培训具有大数据集的复杂模型的主要挑战之一是处理陷阱效果。作为解决方案,最近提出了对计算任务有效地增加了冗余的编码计算。在该技术中,跨数据集使用编码,并且计算在编码数据上完成,使得具有特定大小的工作节点的任意子集的结果足以恢复最终结果。这些方法的主要挑战是(1)它们仅限于多项式函数计算,(2)服务器子集的大小,我们需要等待数据集大小的乘法和模型复杂性的乘法(多项式的程度),其可能过大,(3)它们对实际数字的计算不是数值稳定的。在本文中,我们将Berrut近似编码计算(BACC)提出,作为替代方法,其不限于多项式函数计算。此外,主节点可以使用可用工作人员节点的任何任意子集的结果大致计算最终结果。近似方法被证明具有低计算复杂性的数值稳定。另外,理论上建立近似的准确性并通过仿真验证导致不同的设置,例如分布式学习问题。特别地,BACC用于在一组服务器上训练深度神经网络,这在收敛速率方面优于重复计算(重复编码)。
translated by 谷歌翻译
Investigation and analysis of patient outcomes, including in-hospital mortality and length of stay, are crucial for assisting clinicians in determining a patient's result at the outset of their hospitalization and for assisting hospitals in allocating their resources. This paper proposes an approach based on combining the well-known gray wolf algorithm with frequent items extracted by association rule mining algorithms. First, original features are combined with the discriminative extracted frequent items. The best subset of these features is then chosen, and the parameters of the used classification algorithms are also adjusted, using the gray wolf algorithm. This framework was evaluated using a real dataset made up of 2816 patients from the Imam Ali Kermanshah Hospital in Iran. The study's findings indicate that low Ejection Fraction, old age, high CPK values, and high Creatinine levels are the main contributors to patients' mortality. Several significant and interesting rules related to mortality in hospitals and length of stay have also been extracted and presented. Additionally, the accuracy, sensitivity, specificity, and auroc of the proposed framework for the diagnosis of mortality in the hospital using the SVM classifier were 0.9961, 0.9477, 0.9992, and 0.9734, respectively. According to the framework's findings, adding frequent items as features considerably improves classification accuracy.
translated by 谷歌翻译
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation, object detection, foundation models, and knowledge distillation further shows RangeAugment's effectiveness.
translated by 谷歌翻译
The task of locating and classifying different types of vehicles has become a vital element in numerous applications of automation and intelligent systems ranging from traffic surveillance to vehicle identification and many more. In recent times, Deep Learning models have been dominating the field of vehicle detection. Yet, Bangladeshi vehicle detection has remained a relatively unexplored area. One of the main goals of vehicle detection is its real-time application, where `You Only Look Once' (YOLO) models have proven to be the most effective architecture. In this work, intending to find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh, we have conducted a performance analysis of different variants of the YOLO-based architectures such as YOLOV3, YOLOV5s, and YOLOV5x. The models were trained on a dataset containing 7390 images belonging to 21 types of vehicles comprising samples from the DhakaAI dataset, the Poribohon-BD dataset, and our self-collected images. After thorough quantitative and qualitative analysis, we found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
Hyperspectral Imaging (HSI) provides detailed spectral information and has been utilised in many real-world applications. This work introduces an HSI dataset of building facades in a light industry environment with the aim of classifying different building materials in a scene. The dataset is called the Light Industrial Building HSI (LIB-HSI) dataset. This dataset consists of nine categories and 44 classes. In this study, we investigated deep learning based semantic segmentation algorithms on RGB and hyperspectral images to classify various building materials, such as timber, brick and concrete.
translated by 谷歌翻译
Automatic labelling of anatomical structures, such as coronary arteries, is critical for diagnosis, yet existing (non-deep learning) methods are limited by a reliance on prior topological knowledge of the expected tree-like structures. As the structure such vascular systems is often difficult to conceptualize, graph-based representations have become popular due to their ability to capture the geometric and topological properties of the morphology in an orientation-independent and abstract manner. However, graph-based learning for automated labeling of tree-like anatomical structures has received limited attention in the literature. The majority of prior studies have limitations in the entity graph construction, are dependent on topological structures, and have limited accuracy due to the anatomical variability between subjects. In this paper, we propose an intuitive graph representation method, well suited to use with 3D coordinate data obtained from angiography scans. We subsequently seek to analyze subject-specific graphs using geometric deep learning. The proposed models leverage expert annotated labels from 141 patients to learn representations of each coronary segment, while capturing the effects of anatomical variability within the training data. We investigate different variants of so-called message passing neural networks. Through extensive evaluations, our pipeline achieves a promising weighted F1-score of 0.805 for labeling coronary artery (13 classes) for a five-fold cross-validation. Considering the ability of graph models in dealing with irregular data, and their scalability for data segmentation, this work highlights the potential of such methods to provide quantitative evidence to support the decisions of medical experts.
translated by 谷歌翻译
Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.
translated by 谷歌翻译
Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP.
translated by 谷歌翻译