人们如何思考,感受和行为,主要是对其人格特征的代表。通过意识到我们正在与之打交道或决定处理的个人的个性特征,无论其类型如何,人们都可以胜任地改善这种关系。随着基于互联网的通信基础架构(社交网络,论坛等)的兴起,那里发生了相当多的人类通信。这种交流中最突出的工具是以书面和口语形式的语言,可以忠实地编码个人的所有基本人格特征。基于文本的自动人格预测(APP)是基于生成/交换的文本内容的个人个性的自动预测。本文提出了一种基于文本的应用程序的新型知识的方法,该方法依赖于五大人格特征。为此,给定文本,知识图是一组相互联系的概念描述,是通过将输入文本的概念与DBPEDIA知识基础条目匹配的。然后,由于实现了更强大的表示,该图被DBPEDIA本体论,NRC情感强度词典和MRC心理语言数据库信息丰富。之后,现在是输入文本的知识渊博的替代方案的知识图被嵌入以产生嵌入矩阵。最后,为了执行人格预测,将最终的嵌入矩阵喂入四个建议的深度学习模型,这些模型基于卷积神经网络(CNN),简单的复发性神经网络(RNN),长期短期记忆(LSTM)和双向长短短短术语内存(Bilstm)。结果表明,所有建议的分类器中的预测准确度有了显着改善。
translated by 谷歌翻译