人们如何思考,感受和行为,主要是对其人格特征的代表。通过意识到我们正在与之打交道或决定处理的个人的个性特征,无论其类型如何,人们都可以胜任地改善这种关系。随着基于互联网的通信基础架构(社交网络,论坛等)的兴起,那里发生了相当多的人类通信。这种交流中最突出的工具是以书面和口语形式的语言,可以忠实地编码个人的所有基本人格特征。基于文本的自动人格预测(APP)是基于生成/交换的文本内容的个人个性的自动预测。本文提出了一种基于文本的应用程序的新型知识的方法,该方法依赖于五大人格特征。为此,给定文本,知识图是一组相互联系的概念描述,是通过将输入文本的概念与DBPEDIA知识基础条目匹配的。然后,由于实现了更强大的表示,该图被DBPEDIA本体论,NRC情感强度词典和MRC心理语言数据库信息丰富。之后,现在是输入文本的知识渊博的替代方案的知识图被嵌入以产生嵌入矩阵。最后,为了执行人格预测,将最终的嵌入矩阵喂入四个建议的深度学习模型,这些模型基于卷积神经网络(CNN),简单的复发性神经网络(RNN),长期短期记忆(LSTM)和双向长短短短术语内存(Bilstm)。结果表明,所有建议的分类器中的预测准确度有了显着改善。
translated by 谷歌翻译
许多研究人员使用标签信息来提高推荐系统推荐技术的性能。检查用户的标志将有助于获得他们的兴趣,并导致建议的更准确。由于用户定义的标签是自由选择的,因此在没有任何限制的情况下,在确定它们的确切含义和标签的相似性时出现问题。另一方面,由于用户在许多数据集中使用不同语言的自由定义,使用杂散和本体找到标签的含义并不是很有效。因此,本文使用数学和统计方法来确定词汇相似性和共发生标签解决方案以分配语义相似性。另一方面,由于用户随着时间的流利的变化,本文已经考虑了用于确定标签的相似性的共发生标签中标记分配的时间。然后基于这些相似之处创建图形。为了建模用户的利益,通过使用社区检测方法确定标签的社区。因此,基于标签社区和资源之间的相似性的建议。已经使用基于“美味”数据集的评估,使用两个精度和召回标准进行了所提出的方法的性能。评价结果表明,与其他方法相比,所提出的方法的精度和召回显着改善。
translated by 谷歌翻译
他/她在讲话或写作中使用的那些词表现得很重要。由于传播信息基础架构(特别是互联网和社交媒体),人类通讯从面对面的交流中进行了显着改革。通常,自动人格预测(或感知)(APP)是对不同类型的人类生成/交换内容(例如文本,语音,图像,视频等)的人格的自动预测。这项研究的主要目的是从文本中提高应用程序的准确性。为此,我们建议使用五种新的应用程序方法,包括基于术语频率向量,基于本体的,富集基于本体的潜在语义分析(LSA)基于基于本体的频率和基于深度学习(BILSTM)的方法。这些方法是基本方法,可以通过基于分层注意力网络(HAN)作为元模型的集合建模(堆叠)来提高应用程序的准确性。结果表明,整体建模增强了应用程序的准确性。
translated by 谷歌翻译
通过使信息生产和复制民主化的技术,社交媒体中每日互动的很大一部分被谣言感染了。尽管对谣言检测和验证进行了广泛的研究,但到目前为止,尚未考虑计算谣言传播力量的问题。为了解决这一研究差距,本研究寻求一个模型来计算谣言(SPR)作为基于内容特征的功能的两类功能:虚假谣言(FR)和真实谣言(TR)。为此,将采用Allport和Postman的理论,它声称重要性和歧义是谣言和谣言的力量的关键变量。引入了两个类别的“重要性”(28个功能)和“歧义”(14个功能)的42个内容功能以计算SPR。提出的模型将在两个数据集(Twitter和Telegram)上进行评估。结果表明,(i)虚假谣言文件的传播力量很少不仅仅是真正的谣言。 (ii)两组虚假谣言和真实谣言的SPR平均值之间存在显着差异。 (iii)SPR作为标准可以对区分虚假谣言和真实谣言产生积极影响。
translated by 谷歌翻译
随着点云上的3D对象检测依赖于点之间的几何关系,非标准对象形状可以妨碍方法的检测能力。然而,在安全关键环境中,在分销外和长尾样品上的鲁棒性是对规避危险问题的基础,例如损坏或稀有汽车的误读。在这项工作中,我们通过在训练期间考虑到变形的点云来大大改善3D对象探测器的概括到域名数据。我们通过3D-VFIEL实现这一点:一种新的方法,可以通过越野时代的载体衡量物体。我们的方法将3D点限制以沿着传感器视图幻灯片幻灯片,而既不添加也不添加它们中的任何一个。所获得的载体是可转移的,独立于样的和保持形状平滑度和闭塞。通过在训练期间使用这些载体场产生的变形来增强正常样本,我们显着改善了对不同形状物体的鲁棒性,例如损坏/变形汽车,即使仅在基蒂训练。为此,我们提出并分享开源Crashd:现实损坏和稀有汽车的合成数据集,具有各种碰撞情景。在Kitti,Waymo,我们的Crashd和Sun RGB-D上进行了广泛的实验,表明了我们对室内和室外场景的域外数据,不同型号和传感器,即LIDAR和TOF相机的技术的高度普遍性。我们的crashd数据集可在https://crashd-cars.github.io上获得。
translated by 谷歌翻译
估计神经网络的不确定性在安全关键环境中起着基本作用。在对自主驾驶的感知中,测量不确定性意味着向下游任务提供额外的校准信息,例如路径规划,可以将其用于安全导航。在这项工作中,我们提出了一种用于对象检测的新型采样的不确定性估计方法。我们称之为特定网络,它是第一个为每个输出信号提供单独的不确定性:Objectness,类,位置和大小。为实现这一点,我们提出了一种不确定性感知的热图,并利用检测器提供的相邻边界框在推理时间。我们分别评估了不同不确定性估计的检测性能和质量,也具有具有挑战性的域名样本:BDD100K和肾上腺素训练在基蒂培训。此外,我们提出了一种新的指标来评估位置和大小的不确定性。当转移到看不见的数据集时,某些基本上概括了比以前的方法和集合更好,同时是实时和提供高质量和全面的不确定性估计。
translated by 谷歌翻译