In this research, we are about to present an agentbased model of human muscle which can be used in analysis of human movement. As the model is designed based on the physiological structure of the muscle, The simulation calculations would be natural, and also, It can be possible to analyze human movement using reverse engineering methods. The model is also a suitable choice to be used in modern prostheses, because the calculation of the model is less than other machine learning models such as artificial neural network algorithms and It makes our algorithm battery-friendly. We will also devise a method that can calculate the intensity of human muscle during gait cycle using a reverse engineering solution. The algorithm called Boots is different from some optimization methods, so It would be able to compute the activities of both agonist and antagonist muscles in a joint. As a consequence, By having an agent-based model of human muscle and Boots algorithm, We would be capable to develop software that can calculate the nervous stimulation of human's lower body muscle based on the angular displacement during gait cycle without using painful methods like electromyography. By developing the application as open-source software, We are hopeful to help researchers and physicians who are studying in medical and biomechanical fields.
translated by 谷歌翻译