事实核对是打击在线错误信息方面的有效解决方案之一。但是,传统的事实检查是一个需要稀缺专家人力资源的过程,因此由于要检查新内容的持续流动,因此在社交媒体上并不能很好地扩展。已经提出了基于众包的方法来应对这一挑战,因为它们可以以较小的成本进行扩展,但是尽管它们证明是可行的,但一直在受控环境中进行研究。在这项工作中,我们研究了在BirdWatch计划的Twitter启动的,在实践中部署的众包事实检查的第一个大规模努力。我们的分析表明,在某些情况下,众包可能是一种有效的事实检查策略,甚至可以与人类专家获得的结果相媲美,但不会导致其他人的一致,可行的结果。我们处理了BirdWatch计划验证的11.9k推文,并报告了i)人群和专家如何选择内容的内容的差异,ii)ii)人群和专家如何将不同的资源检索到事实检查,以及III )与专家检查员相比,人群在事实检查可伸缩性和效率方面所显示的优势。
translated by 谷歌翻译
The prevalence of diabetic retinopathy (DR) has reached 34.6% worldwide and is a major cause of blindness among middle-aged diabetic patients. Regular DR screening using fundus photography helps detect its complications and prevent its progression to advanced levels. As manual screening is time-consuming and subjective, machine learning (ML) and deep learning (DL) have been employed to aid graders. However, the existing CNN-based methods use either pre-trained CNN models or a brute force approach to design new CNN models, which are not customized to the complexity of fundus images. To overcome this issue, we introduce an approach for custom-design of CNN models, whose architectures are adapted to the structural patterns of fundus images and better represent the DR-relevant features. It takes the leverage of k-medoid clustering, principal component analysis (PCA), and inter-class and intra-class variations to automatically determine the depth and width of a CNN model. The designed models are lightweight, adapted to the internal structures of fundus images, and encode the discriminative patterns of DR lesions. The technique is validated on a local dataset from King Saud University Medical City, Saudi Arabia, and two challenging benchmark datasets from Kaggle: EyePACS and APTOS2019. The custom-designed models outperform the famous pre-trained CNN models like ResNet152, Densnet121, and ResNeSt50 with a significant decrease in the number of parameters and compete well with the state-of-the-art CNN-based DR screening methods. The proposed approach is helpful for DR screening under diverse clinical settings and referring the patients who may need further assessment and treatment to expert ophthalmologists.
translated by 谷歌翻译
在这项工作中,我们展示了普遍的多方中毒攻击,适应并适用于各方之间的任意交互模式的多方学习过程。更一般地说,我们介绍和研究$(k,p)$ - 中毒攻击,其中对手控制在[m] $中,以及每个损坏的派对$ p_i $,对手提交一些中毒数据$ \ mathcal {t}'_ i $代表$ p_i $,它仍然是``$(1-p)$ - 关闭''到正确的数据$ \ mathcal {t} _i $(例如,$ 1-p $ fillaction $ \ mathcal {t}'_ i $仍然诚实地生成)。我们证明,对于任何``bad'属性$ b $ b $ h $ h $(例如,特定测试示例上的$ h $失败或拥有具有任意小的持续概率的``lable''风险)没有攻击的情况,总是有一个$(k,p)$ - 中毒攻击,增加了$ \ mu $的$ \ mu $ to \ mu ^ {1-p \ cdot k / m}} = \ mu +ω(p \ cdot k / m)$。我们的攻击只使用干净的标签,它在线。更一般地说,我们证明,对于任何界限函数$ f(x_1,\ dots,x_n)\在$ n $ -step随机过程$ \ mathbf {x} =(x_1,\ dots ,x_n)$,可以覆盖每一个$ n $块的对手,甚至依赖概率$ p $可以通过至少$ \ω(p \ cdot \ mathrm {var} [f(\ mathbf { x})])$。
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Can a neural network estimate an object's dimension in the wild? In this paper, we propose a method and deep learning architecture to estimate the dimensions of a quadrilateral object of interest in videos using a monocular camera. The proposed technique does not use camera calibration or handcrafted geometric features; however, features are learned with the help of coefficients of a segmentation neural network during the training process. A real-time instance segmentation-based Deep Neural Network with a ResNet50 backbone is employed, giving the object's prototype mask and thus provides a region of interest to regress its dimensions. The instance segmentation network is trained to look at only the nearest object of interest. The regression is performed using an MLP head which looks only at the mask coefficients of the bounding box detector head and the prototype segmentation mask. We trained the system with three different random cameras achieving 22% MAPE for the test dataset for the dimension estimation
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
In a sequential decision-making problem, having a structural dependency amongst the reward distributions associated with the arms makes it challenging to identify a subset of alternatives that guarantees the optimal collective outcome. Thus, besides individual actions' reward, learning the causal relations is essential to improve the decision-making strategy. To solve the two-fold learning problem described above, we develop the 'combinatorial semi-bandit framework with causally related rewards', where we model the causal relations by a directed graph in a stationary structural equation model. The nodal observation in the graph signal comprises the corresponding base arm's instantaneous reward and an additional term resulting from the causal influences of other base arms' rewards. The objective is to maximize the long-term average payoff, which is a linear function of the base arms' rewards and depends strongly on the network topology. To achieve this objective, we propose a policy that determines the causal relations by learning the network's topology and simultaneously exploits this knowledge to optimize the decision-making process. We establish a sublinear regret bound for the proposed algorithm. Numerical experiments using synthetic and real-world datasets demonstrate the superior performance of our proposed method compared to several benchmarks.
translated by 谷歌翻译
Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called Lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve similar accuracy to the original unpruned network. We introduce a novel winning ticket called Cyclic Overlapping Lottery Ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. We show that the accuracy of COLT is on par with the winning tickets of Lottery Ticket Hypothesis (LTH) and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular Iterative Magnitude Pruning (IMP) method. In addition, we also notice COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100 & TinyImageNet datasets and report superior performance than the state-of-the-art methods.
translated by 谷歌翻译