传入/传出车辆的记录是根本原因分析的关键信息,以打击各种敏感组织中的安全违规事件。 RFID标记会阻碍物流和技术方面的车辆跟踪解决方案的可扩展性。例如,要求标记为RFID的每个传入车辆(部门或私人)是严重的限制,并且与RFID一起检测异常车辆运动的视频分析是不平凡的。我们利用公开可用的计算机视觉算法实现,使用有限状态机形式主义开发可解释的车辆跟踪算法。国家机器将用于状态转换的级联对象检测和光学特征识别(OCR)模型中的输入。我们从系统部署站点中评估了75个285辆车的视频片段中提出的方法。我们观察到检测率受速度和车辆类型的影响最大。当车辆运动仅限于在检查点类似于RFID标记的检查点时,将达到最高的检测率。我们进一步分析了700个对Live DATA的车辆跟踪预测,并确定大多数车辆数量预测误差是由于无法辨认的文本,图像布鲁尔,文本遮挡,文本遮挡和vecab外字母引起的。为了进行系统部署和性能增强,我们希望我们正在进行的系统监控能够提供证据,以在安全检查点上建立更高的车辆通知SOP,并将已部署的计算机视觉模型和状态模型的微调驱动为建立拟议的方法作为RFID标记的有希望的替代方法。
translated by 谷歌翻译