气候变化所扩大的极端天气正在造成全球日益毁灭性的影响。由于高计算成本和严格的时间到解决方案限制,目前基于物理的数值天气预测(NWP)的使用限制了精度。我们报告说,数据驱动的深度学习地球系统模拟器Fourcastnet可以预测全球天气,并在接近最先进的准确性的同时,比NWP更快地产生五个量子的预测。四个超级计算系统(Selene,Perlmutter和Juwels Booster高达3,808 nvidia a100 GPU)在三个超级计算系统上进行了优化,并有效地缩放,并在混合精度中获得140.8 PETAFLOPS(该规模的峰值为11.9%)。在3,072GPU上在Juwels Booster上测量的训练四界的时间到达的时间为67.4分钟,相对于最新的NWP,在推理中,相对于最先进的NWP的时间更快。 Fourcastnet提前一周可产生准确的瞬时天气预测,使巨大的合奏更好地捕捉了极端天气,并支持更高的全球预测决议。
translated by 谷歌翻译
展开的神经网络最近实现了最先进的MRI重建。这些网络通过在基于物理的一致性和基于神经网络的正则化之间交替来展开迭代优化算法。但是,它们需要大型神经网络的几次迭代来处理高维成像任务,例如3D MRI。这限制了基于反向传播的传统训练算法,这是由于较大的记忆力和计算梯度和存储中间激活的计算要求。为了应对这一挑战,我们提出了加速MRI(GLEAM)重建的贪婪学习,这是一种高维成像设置的有效培训策略。 GLEAM将端到端网络拆分为脱钩的网络模块。每个模块都以贪婪的方式优化,并通过脱钩的梯度更新,从而减少了训练过程中的内存足迹。我们表明,可以在多个图形处理单元(GPU)上并行执行解耦梯度更新,以进一步减少训练时间。我们介绍了2D和3D数据集的实验,包括多线圈膝,大脑和动态心脏Cine MRI。我们观察到:i)闪闪发光的概括以及最先进的记忆效率基线,例如具有相同内存足迹的梯度检查点和可逆网络,但训练速度更快1.3倍; ii)对于相同的内存足迹,闪光在2D中产生1.1dB PSNR的增益,而3D在端到端基线中产生1.8 dB。
translated by 谷歌翻译
视觉变压器在代表学习中提供了巨大的成功。这主要是由于通过自我关注混合的有效令牌。然而,这与像素的数量相当缩放,这对于高分辨率输入而变得不可行。为了应对这一挑战,我们将自适应傅里叶神经运营商(AFNO)提出为一个有效的令牌混合器,学习在傅立叶域中混合。 AFNO基于经营者学习的主要基础,这使我们可以将令牌混合作为连续的全局卷积,而无需任何对输入分辨率的依赖性。这一原则以前用于设计FNO,它在傅立叶域中有效地解决了全球卷积,并在学习挑战PDE时显示了承诺。为了处理视觉表现的挑战,例如图像和高分辨率输入中的不连续性,我们向FNO提出了原则的架构修改,从而导致内存和计算效率。这包括在信道混合重量上施加块对角线结构,通过软阈值和收缩来自适应地共享令牌的权重,并缩小频率模式。得到的模型与准线性复杂度高度平行,并且序列大小具有线性存储器。在效率和准确性方面,AFNO优于几次拍摄分割的自我关注机制。对于Segformer-B3骨架的城市景观分割,AFNO可以处理65K的序列大小,优于其他有效的自我关注机制。
translated by 谷歌翻译
Recent semi-supervised and self-supervised methods have shown great success in the image and text domain by utilizing augmentation techniques. Despite such success, it is not easy to transfer this success to tabular domains. It is not easy to adapt domain-specific transformations from image and language to tabular data due to mixing of different data types (continuous data and categorical data) in the tabular domain. There are a few semi-supervised works on the tabular domain that have focused on proposing new augmentation techniques for tabular data. These approaches may have shown some improvement on datasets with low-cardinality in categorical data. However, the fundamental challenges have not been tackled. The proposed methods either do not apply to datasets with high-cardinality or do not use an efficient encoding of categorical data. We propose using conditional probability representation and an efficient progressively feature upgrading framework to effectively learn representations for tabular data in semi-supervised applications. The extensive experiments show superior performance of the proposed framework and the potential application in semi-supervised settings.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
与其2D图像对应物相比,3D点云数据上的零射击学习是一个相关的未置换问题。 3D数据由于不可用的预训练特征提取模型而带来了ZSL的新挑战。为了解决这个问题,我们提出了一种及时引导的3D场景生成和监督方法,该方法可以增强3D数据以更好地学习网络,从而探索可见和看不见的对象的复杂相互作用。首先,我们以提示描述的某些方式合并了两个3D模型的点云。提示的行为就像描述每个3D场景的注释一样。后来,我们进行对比学习,以端到端的方式培训我们所提出的建筑。我们认为,与单​​个对象相比,3D场景可以更有效地关联对象,因为当对象出现在上下文中时,流行的语言模型(如Bert)可以实现高性能。我们提出的及时引导场景生成方法封装了数据扩展和基于及时的注释/字幕,以提高3D ZSL性能。我们已经在合成(ModelNet40,ModelNet10)和实扫描(ScanoJbectnn)3D对象数据集上实现了最新的ZSL和广义ZSL性能。
translated by 谷歌翻译
学习合适的全幻灯片图像(WSIS)表示有效检索系统是一项非平凡的任务。从当前方法中获得的WSI嵌入在欧几里得空间中并不理想有效的WSI检索。此外,由于同时处理多组贴片,因此大多数当前方法都需要高GPU存储器。为了应对这些挑战,我们提出了一个新颖的框架,用于利用深层生成建模和Fisher向量学习二进制和稀疏的WSI表示。我们引入了新的损失功能,以学习稀疏和二进制置换不变的WSI表示,采用基于实例的培训来提高记忆效率。在癌症基因组地图集(​​TCGA)和肝脏-Kidney-Stomach(LKS)数据集上验证了博学的WSI表示。在检索准确性和速度方面,该方法的表现优于Yottixel(最新的组织病理学图像搜索引擎)。此外,我们在公共基准LKS数据集中对SOTA实现了竞争性能,以进行WSI分类。
translated by 谷歌翻译
在实际执行或基准测试之前预测生产代码的性能是高度挑战的。在本文中,我们提出了一个被称为TEP-GNN的预测模型,该模型表明,对于预测单位测试执行时间的特殊情况,高准确性的性能预测是可能的。 Tep-gnn使用FA-asts或流动的ASTS作为基于图的代码表示方法,并使用强大的图形神经网络(GNN)深度学习模型预测测试执行时间。我们基于从项目公共存储库中开采的922个测试文件,使用四个现实生活中的Java开源程序评估TEP-GNN。我们发现我们的方法达到了0.789的较高的Pearson相关性,表现优于基线深度学习模型。但是,我们还发现,训练有素的模型需要更多的工作来概括看不见的项目。我们的工作表明,FA-asts和GNN是预测绝对性能值的可行方法,并作为能够在执行前预测任意代码的性能的重要中介步骤。
translated by 谷歌翻译
联邦学习(FL)是一种分散的方法,使医院能够在不共享私人患者数据进行培训的情况下协作学习模型。在FL中,参与者医院定期交换培训结果,而不是使用中央服务器培训样品。但是,访问模型参数或梯度可以暴露私人培训数据样本。为了应对这一挑战,我们采用安全的多方计算(SMC)来建立一个保护隐私的联合学习框架。在我们提出的方法中,医院分为集群。在当地培训之后,每家医院在同一集群中分解了其他医院的模型权重,因此没有一家医院可以自己检索其他医院的体重。然后,所有医院总结了收到的权重,将结果发送到中央服务器。最后,中央服务器汇总了结果,检索模型的平均权重并更新模型,而无需访问各个医院的权重。我们在公开可用的存储库《癌症基因组图集》(TCGA)上进行实验。我们将提议框架的性能与差异隐私进行比较,并将平均为基准。结果表明,与差异隐私相比,我们的框架可以实现更高的准确性,而没有隐私泄漏风险,而较高的通信开销则可以实现。
translated by 谷歌翻译
只要可以预见的是测试代码的固有特征,可以大大降低测试的高成本。本文提供了一种机器学习模型,以预测测试可以在多大程度上覆盖一个名为Coverabeality的新指标。预测模型由四个回归模型的集合组成。学习样本由特征向量组成,其中特征是为类计算的源代码指标。样品由针对其相应类计算的覆盖率值标记。我们提供了一个数学模型,以评估每个班级自动生成的测试套件的尺寸和覆盖范围的测试效果。我们通过引入一种新方法来根据现有源代码指标来定义子计量数来扩展功能空间的大小。使用功能重要性分析在学习的预测模型上,我们按照对测试效果的影响顺序对源代码指标进行排序。结果,我们发现类别严格的循环复杂性是最有影响力的源代码度量。我们对包含大约23,000个类的大型Java项目的预测模型进行的实验表明,平均绝对误差(MAE)为0.032,平均平方误差(MSE)为0.004,R2得分为0.855。与最先进的覆盖范围预测模型相比,我们的模型分别提高了MAE,MSE和R2得分5.78%,2.84%和20.71%。
translated by 谷歌翻译