Covid-19的早期检测是一个持续的研究领域,可以帮助潜在患者的潜在患者进行分类,监测和一般健康评估,并可能降低应对冠状病毒大流行病的医院的运营压力。在文献中使用了不同的机器学习技术,用于使用常规临床数据(血液测试和生命体征)来检测冠状病毒。使用这些型号时,数据漏洞和信息泄漏可以带来声誉损害并导致医院的法律问题。尽管如此,保护避免潜在敏感信息泄漏的医疗保健模型是一个被人吸引人的研究区。在这项工作中,我们检查了两种机器学习方法,旨在预测使用常规收集和易于使用的临床数据的患者的Covid-19状态。我们雇用对抗性培训来探索强大的深度学习架构,保护与有关患者的人口统计信息相关的属性。我们在这项工作中检查的两种模型旨在保持对抗对抗攻击和信息泄漏的敏感信息。在一系列使用来自牛津大学医院的数据集,Bedfordshire医院NHS Foundation Trust,大学医院伯明翰NHS基金会信托,而朴茨茅斯医院大学NHS信任我们训练并测试两个神经网络,以使用来自基本实验室血液的信息预测PCR测试结果的神经网络对患者到达医院的测试和生命体征。我们评估其每个模型的隐私水平可以提供和展示我们提出的架构对可比基线的效力和稳健性。我们的主要贡献之一是,我们专门针对具有内置机制的有效Covid-19检测模型的开发,以便选择性地保护对抗对抗攻击的敏感属性。
translated by 谷歌翻译
Recent semi-supervised and self-supervised methods have shown great success in the image and text domain by utilizing augmentation techniques. Despite such success, it is not easy to transfer this success to tabular domains. It is not easy to adapt domain-specific transformations from image and language to tabular data due to mixing of different data types (continuous data and categorical data) in the tabular domain. There are a few semi-supervised works on the tabular domain that have focused on proposing new augmentation techniques for tabular data. These approaches may have shown some improvement on datasets with low-cardinality in categorical data. However, the fundamental challenges have not been tackled. The proposed methods either do not apply to datasets with high-cardinality or do not use an efficient encoding of categorical data. We propose using conditional probability representation and an efficient progressively feature upgrading framework to effectively learn representations for tabular data in semi-supervised applications. The extensive experiments show superior performance of the proposed framework and the potential application in semi-supervised settings.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
与其2D图像对应物相比,3D点云数据上的零射击学习是一个相关的未置换问题。 3D数据由于不可用的预训练特征提取模型而带来了ZSL的新挑战。为了解决这个问题,我们提出了一种及时引导的3D场景生成和监督方法,该方法可以增强3D数据以更好地学习网络,从而探索可见和看不见的对象的复杂相互作用。首先,我们以提示描述的某些方式合并了两个3D模型的点云。提示的行为就像描述每个3D场景的注释一样。后来,我们进行对比学习,以端到端的方式培训我们所提出的建筑。我们认为,与单​​个对象相比,3D场景可以更有效地关联对象,因为当对象出现在上下文中时,流行的语言模型(如Bert)可以实现高性能。我们提出的及时引导场景生成方法封装了数据扩展和基于及时的注释/字幕,以提高3D ZSL性能。我们已经在合成(ModelNet40,ModelNet10)和实扫描(ScanoJbectnn)3D对象数据集上实现了最新的ZSL和广义ZSL性能。
translated by 谷歌翻译
在生物医学语料库中预先培训的语言模型,例如Biobert,最近在下游生物医学任务上显示出令人鼓舞的结果。另一方面,由于嵌入尺寸,隐藏尺寸和层数等因素,许多现有的预训练模型在资源密集型和计算上都是沉重的。自然语言处理(NLP)社区已经制定了许多策略来压缩这些模型,利用修剪,定量和知识蒸馏等技术,从而导致模型更快,更小,随后更易于使用。同样,在本文中,我们介绍了六种轻型模型,即Biodistilbert,Biotinybert,BioMobilebert,Distilbiobert,Tinybiobert和Cmpactactbiobert,并通过掩护的语言在PubMed DataSet上通过掩护数据进行了知识蒸馏而获得的知识蒸馏来获得。建模(MLM)目标。我们在三个生物医学任务上评估了所有模型,并将它们与Biobert-V1.1进行比较,以创建有效的轻量级模型,以与较大的对应物相同。所有模型将在我们的HuggingFace配置文件上公开可用,网址为https://huggingface.co/nlpie,用于运行实验的代码将在https://github.com/nlpie-research/compact-compact-biomedical-transformers上获得。
translated by 谷歌翻译
学习合适的全幻灯片图像(WSIS)表示有效检索系统是一项非平凡的任务。从当前方法中获得的WSI嵌入在欧几里得空间中并不理想有效的WSI检索。此外,由于同时处理多组贴片,因此大多数当前方法都需要高GPU存储器。为了应对这些挑战,我们提出了一个新颖的框架,用于利用深层生成建模和Fisher向量学习二进制和稀疏的WSI表示。我们引入了新的损失功能,以学习稀疏和二进制置换不变的WSI表示,采用基于实例的培训来提高记忆效率。在癌症基因组地图集(​​TCGA)和肝脏-Kidney-Stomach(LKS)数据集上验证了博学的WSI表示。在检索准确性和速度方面,该方法的表现优于Yottixel(最新的组织病理学图像搜索引擎)。此外,我们在公共基准LKS数据集中对SOTA实现了竞争性能,以进行WSI分类。
translated by 谷歌翻译
在实际执行或基准测试之前预测生产代码的性能是高度挑战的。在本文中,我们提出了一个被称为TEP-GNN的预测模型,该模型表明,对于预测单位测试执行时间的特殊情况,高准确性的性能预测是可能的。 Tep-gnn使用FA-asts或流动的ASTS作为基于图的代码表示方法,并使用强大的图形神经网络(GNN)深度学习模型预测测试执行时间。我们基于从项目公共存储库中开采的922个测试文件,使用四个现实生活中的Java开源程序评估TEP-GNN。我们发现我们的方法达到了0.789的较高的Pearson相关性,表现优于基线深度学习模型。但是,我们还发现,训练有素的模型需要更多的工作来概括看不见的项目。我们的工作表明,FA-asts和GNN是预测绝对性能值的可行方法,并作为能够在执行前预测任意代码的性能的重要中介步骤。
translated by 谷歌翻译
联邦学习(FL)是一种分散的方法,使医院能够在不共享私人患者数据进行培训的情况下协作学习模型。在FL中,参与者医院定期交换培训结果,而不是使用中央服务器培训样品。但是,访问模型参数或梯度可以暴露私人培训数据样本。为了应对这一挑战,我们采用安全的多方计算(SMC)来建立一个保护隐私的联合学习框架。在我们提出的方法中,医院分为集群。在当地培训之后,每家医院在同一集群中分解了其他医院的模型权重,因此没有一家医院可以自己检索其他医院的体重。然后,所有医院总结了收到的权重,将结果发送到中央服务器。最后,中央服务器汇总了结果,检索模型的平均权重并更新模型,而无需访问各个医院的权重。我们在公开可用的存储库《癌症基因组图集》(TCGA)上进行实验。我们将提议框架的性能与差异隐私进行比较,并将平均为基准。结果表明,与差异隐私相比,我们的框架可以实现更高的准确性,而没有隐私泄漏风险,而较高的通信开销则可以实现。
translated by 谷歌翻译
只要可以预见的是测试代码的固有特征,可以大大降低测试的高成本。本文提供了一种机器学习模型,以预测测试可以在多大程度上覆盖一个名为Coverabeality的新指标。预测模型由四个回归模型的集合组成。学习样本由特征向量组成,其中特征是为类计算的源代码指标。样品由针对其相应类计算的覆盖率值标记。我们提供了一个数学模型,以评估每个班级自动生成的测试套件的尺寸和覆盖范围的测试效果。我们通过引入一种新方法来根据现有源代码指标来定义子计量数来扩展功能空间的大小。使用功能重要性分析在学习的预测模型上,我们按照对测试效果的影响顺序对源代码指标进行排序。结果,我们发现类别严格的循环复杂性是最有影响力的源代码度量。我们对包含大约23,000个类的大型Java项目的预测模型进行的实验表明,平均绝对误差(MAE)为0.032,平均平方误差(MSE)为0.004,R2得分为0.855。与最先进的覆盖范围预测模型相比,我们的模型分别提高了MAE,MSE和R2得分5.78%,2.84%和20.71%。
translated by 谷歌翻译
软件测试可能是一个漫长且昂贵的过程,尤其是如果无法测试的软件进行测试。重构技术可以通过改善影响可检验性的软件指标来增强可检验性。在构建回归模型学习如何将计算的源代码计算指标与其可检验性相关联的指标时,确定了指标。我们确定了15个软件指标,在解释我们的可检测性预测模型的同时,高度影响可检验性。我们使用42个Java类的实验表明,除了改善其他一些质量属性外,改善这15个指标的重构平均可以提高可测试性15.57%。我们的可测试性预测模型经过训练,可以映射源代码指标,以测试有效性和效率,作为可测试软件的两种重要成分。随着测试套件获得的覆盖范围的增加,测试有效性会提高。另一方面,随着测试套件的大小增加,测试效率会降低。本文提供了一个数学模型,以根据测试套件的大小和覆盖范围来计算类可检验性。我们使用此数学模型来计算可测试性作为我们可检测性预测模型的目标。数学模型要求执行正在测试的类以计算测试覆盖范围,而我们的回归模型在静态上测量了测试性。在测试性方面的测试结果预测应在测试之前,以避免不必要的成本。我们的可测试性预测模型已在23,886个Java类和262个软件指标上进行了培训和测试。学习的模型以R2为0.68,平均平方误差为0.03,可预测可验证性。
translated by 谷歌翻译